75 research outputs found

    Neurobiological correlates of externalizing and prosocial behavior in school-age children

    Get PDF
    This thesis describes a series of studies on the neurobiological correlates of externalizing and prosocial behavior in six-to ten-year old children. Chapter 1 provides an outline and describes the background and aims of our work. The studies described in this thesis are embedded in the Generation R study, a prospective cohort from fetal life onwards in Rotterdam, the Netherlands. We describe both structural (chapter 2, 3, and 6) and functional neuroimaging studies (chapter 4 and 5) on the association between externalizing and prosocial behavior and the brain, and examine behavior both from a trait-like perspective (chapter 2 and 3) a

    Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Get PDF
    Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression

    Pubertal development mediates the association between family environment and brain structure and function in childhood

    Get PDF
    Psychosocial acceleration theory suggests that pubertal maturation is accelerated in response to adversity. In addition, suboptimal caregiving accelerates development of the amygdala-medial prefrontal cortex circuit. These findings may be related. Here, we assess whether associations between family environment and measures of the amygdala-medial prefrontal cortex circuit are mediated by pubertal development in more than 2000 9- and 10-year-old children from the Adolescent Brain Cognitive Development Study (http://dx.doi.org/10.15154/1412097). Using structural equation modeling, demographic, child-reported, and parent-reported data on family dynamics were compiled into a higher level family environment latent variable. Magnetic resonance imaging preprocessing and compilations were performed by the Adolescent Brain Cognitive Development Study's data analysis core. Anterior cingulate cortex (ACC) thickness, area, white matter fractional anisotropy, amygdala volume, and cingulo-opercular network-amygdala resting-state functional connectivity were assessed. For ACC cortical thickness and ACC fractional anisotropy, significant indirect effects indicated that a stressful family environment relates to more advanced pubertal stage and more mature brain structure. For cingulo-opercular network-amygdala functional connectivity, results indicated a trend in the expected direction. For ACC area, evidence for quadratic mediation by pubertal stage was found. Sex-stratified analyses suggest stronger results for girls. Despite small effect sizes, structural measures of circuits important for emotional behavior are associated with family environment and show initial evidence of accelerated pubertal development

    The longitudinal association between externalizing behavior and frontoamygdalar resting‐state functional connectivity in late adolescence and young adulthood

    Get PDF
    Background: Externalizing behavior has been attributed, in part, to decreased frontolimbic control over amygdala activation. However, little is known about developmental trajectories of frontoamygdalar functional connectivity and its relation to externalizing behavior. The present study addresses this gap by examining longitudinal associations between adolescent and adult externalizing behavior and amygdala–anterior cingulate cortex (ACC) and amygdala– orbitofrontal cortex (OFC) resting-state functional connectivity in a sample of 111 typically developing participants aged 11–23 at baseline. Methods: Participants completed two-to-four data waves spaced approximately two years apart, resulting in a total of 309 data points. At each data wave, externalizing behavior was measured using the Externalizing Behavior Broadband Scale from the Achenbach Youth/Adult Self-Report questionnaire. Resting-state fMRI preprocessing was performed using FS
    • 

    corecore