16 research outputs found

    Diboran(4)azide als stabile Quelle fĂŒr kurzlebige Iminoborane

    Get PDF
    Wir berichten ĂŒber die ersten isolierbaren, elektronen-prĂ€zisen Diborane(4) mit Azidresten: das acyclische 1,2-Diazido-1,2-bis(dimethylamino)diboran(4) und eine Reihe cyclischer 1,4-Diaryl-2,3-diazido-1,4-diaza-2,3-diborine (Aryl=Mesityl, 2,6-Xylyl, 4-Tolyl). Im Gegensatz zu den kĂŒrzlich von uns beschriebenen kurzlebigen Diboran(4)aziden, welche sich bereits bei Raumtemperatur spontan zersetzen, erweisen sich die hier dargestellten MolekĂŒle als thermisch Ă€ußerst robust. So können diese kontrollierte Pyrolysereaktionen bei Temperaturen weit ĂŒber 100 °C eingehen, ohne dass es zu deren explosionsartiger Zersetzung kommt. Überraschenderweise konnten in zwei FĂ€llen nach der Pyrolyse komplexe Diazadiboretidine isoliert werden, welche formal die Dimerisierungsprodukte von endo-cyclischen Boryliminoboranen darstellen

    Diborane(4) Azides: Surprisingly Stable Sources of Transient Iminoboranes

    Get PDF
    Herein we describe the first examples of isolable electron-precise diboranes(4) that bear azide moieties: the acyclic 1,2-diazido-1,2-bis(dimethylamino)diborane(4) and the cyclic 1,4-diaryl-2,3-diazido-1,4-diaza-2,3-diborinines (aryl=mesityl, 2,6-xylyl, 4-tolyl). The reported examples are not only stable enough to be observed and isolated (putative transient diborane(4) azides previously reported by our group spontaneously decompose even below room temperature), but some of them are even robust enough to undergo controlled pyrolysis without explosive decomposition at temperatures well above 100 °C. In two cases, the controlled pyrolysis allows the isolation of complex diazaboretidines, which are the apparent dimerization products of endocyclic boryl-iminoboranes

    Diverse ring-opening reactions of rhodium η4-azaborete complexes

    Get PDF
    Sequential treatment of [Rh(COE)2Cl]2 (COE = cyclooctene) with PiPr3, alkyne derivatives and tBuN[triple bond, length as m-dash]BMes (Mes = 2,4,6-trimethylphenyl) provided functionalized rhodium η4-1,2-azaborete complexes of the form (η4-azaborete)RhCl(PiPr3). The scope of this reaction was expanded to encompass alkynes with hydrogen, alkyl, aryl, ferrocenyl, alkynyl, azaborinyl and boronate ester substituents. Treatment of these complexes with PMe3 led to insertion of the rhodium atom into the B–C bond of the BNC2 ring, forming 1-rhoda-3,2-azaboroles. Addition of N-heterocyclic carbenes to azaborete complexes led to highly unusual rearrangements to rhodium η2,Îș1-allenylborylamino complexes via deprotonation and C–N bond cleavage. Heating and photolysis of an azaborete complex also led to rupture of the C–N bond followed by subsequent rearrangements, yielding an η4-aminoborylallene complex and two isomeric η4-butadiene complexes

    New outcomes of Lewis base addition to diboranes(4): electronic effects override strong steric disincentives

    Get PDF
    Two surprising new outcomes of the reaction of Lewis bases with dihalodiboranes(4) are presented, including sp2–sp3 diboranes in which the Lewis base unit is bound to a highly sterically congested boron atom, and a rearranged double base adduct. The results provide a fuller understanding of the reactivity of diboranes, a poorly-understood class of molecule of critical importance to synthetic organic chemistry

    Synthesis and reactivity of 1,4-diaza-2,3-diborinines

    No full text
    In der vorliegenden Arbeit wurde die Synthese, Funktionalisierung und ReaktivitĂ€t von 1,4,2,3-Diazadiborininen untersucht. Zu Beginn sollten Bis(dimethylamino)-substituierte Diazadiborinine mit unterschiedlichen Resten an den Stickstoffatomen dargestellt werden, deren weitere Funktionalisierung spĂ€ter im Fokus stand. Die Synthese erfolgte durch Reduktion von 1,4-Diazabutadienen mit elementarem Lithium und anschließender Salzeliminierungsreaktion mit B2(NMe2)2Cl2. Dadurch ließen sich die monocyclischen vier N,N’-Diaryl-substituierten Diazadiborinine sowie ein Alkyl-substituiertes Diazadiborinin darstellen. Durch etablierte Methoden der Diboran(4)-Chemie wurden diese in ihre Halogenderivate (Cl, Br, I) ĂŒberfĂŒhrt. Aus diesen konnten drei 2,3-Diazido-1,4,2,3-diazadiborinine durch Umsetzung mit TMSN3 aus den Dihalogenderivaten dargestellt werden. Diese stellen hierbei die ersten isolierten Diboran(4)azidverbindugen dar. Ebenso gelang die Synthese eines bicyclischen Naphthalinisosters, welches erneut erfolgreich in seine Halogenderivate sowie das Diazdidoderivat ĂŒberfĂŒhrt werden konnte. Einen Einblick in den Mechanismus der 1,4,2,3-Diazadiborininbildung ermöglichte die Isolierung eines Diazadiboretidinintermediats, welches durch doppelte Salzeliminierung entsteht. Dieses erwies sich jedoch als metastabil und lagerte zum Sechsring Diazadiborinin um. Quantenchemische Berechnungen unterstutzten die experimentellen Befunde. Über Kommutierungsreaktionen konnte eine Vielzahl an B,B‘-unsymmetrisch substituierten Diazadiborininen dargestellt und isoliert werden, wobei je nach verwendeten Startmaterialien entweder Gleichgewichtsreaktionen oder quantitative Umsetzungen beobachtet wurden. Ebenso wurde die ReaktivitĂ€t der neuartigen Diazidodiborane(4) gegenĂŒber Lewis-Basen untersucht. Sowohl das monocyclische Diazadiborinin, als auch das Benzodiazadiborinin konnten mit NHC-Basen zu den fĂŒnf verschiedenen Addukten umgesetzt werden. Unter thermischer Belastung wurde bei den monocyclischen Addukten eine Staudinger-artige Reaktion beobachtet, die unter Freisetzung von N2 zur Bildung von Guanadin-substituierten Diborane(4) fĂŒhrte. Die Benzodiazadiborininaddukte zeigten jedoch eine gĂ€nzlich andere ReaktivitĂ€t. Hier fand eine Ringverkleinerungsreaktion unter Bildung von Diazaborolen statt, welche unter Wanderung einer Azidfunktion auf das NHC-stabilisierte Boratom gebildet wurden. Auf diese Weise konnten drei 1,1-Diamino-2,2-diazidodiborane(5) isoliert werden. WĂ€hrend bei der Umsetzung des Naphtalenderivats mit cAAC keine selektive Reaktion beobachtet wurde, reagierte das monocyclische Diazadiborinin mit zwei Äquivalenten cAAC. Hier bedingte das erste Carbon eine Staudinger-artige Reaktion, die unter Distickstofffreisetzung zu einem Formamidin fĂŒhrte. Die zweite Azidgruppe wurde am Îł\gamma-Stickstoffatom von einem weiteren Äquivalent cAAC koordiniert. In weiteren ReaktivitĂ€tsstudien wurde die Generierung von transienten Iminoboranen aus Diazidodiazadiborininen untersucht. Die Diazide zeigten bei Temperaturen von ĂŒber 150 °C ein sehr selektives Reaktionsverhalten und gingen unter Freisetzung von Distickstoff zu 1,3,2,4-Diazadiboretidin ĂŒber, wobei dies ĂŒber die Dimerisierung eines intermediĂ€r gebildeten siebengliedrigen, endocyclischen Iminoborans verlief. Der Mechanismus zur Bildung der transienten Iminoborane wurde anhand zweier möglicher Bildungswege mit quantenchemischen Methoden untersucht. Im letzten Kapitel wurde die ReaktivitĂ€t des Dihydrodiazadiborinins gegenĂŒber NHC- und cAAC-Lewis-Basen untersucht. Die Umsetzung mit cAAC fĂŒhrte zu einer B–H-Bindungsaktivierung durch das Carbenkohlenstoffatom, die vermutlich ĂŒber eine Adduktspezies verlĂ€uft. Mit dem gesĂ€ttigten NHC SIMes wurde ebenfalls keine Adduktbildung beobachtet, auch wenn ein derartiges Intermediat vermutlich durchlaufen wird. Als Produkt der Umsetzung wurde indes ein bicyclisches MolekĂŒl identifiziert, welches durch doppelte Ringerweiterung gebildet wurde. Mit ungesĂ€ttigten NHCs wurden drei Addukte isoliert, welche jedoch nur metastabil waren und beim ErwĂ€rmen in bicyclische Verbindungen umlagerten. Die Umlagerungsprodukte konnten weiterhin durch Koordination eines weiteren Äquivalents IMe an die B–H-FunktionalitĂ€t erneut zu Addukten umgesetzt werden. Die Bildung der zweier bicyclischer Verbindungen wurde ebenfalls mit quantenchemischen Methoden untersucht, wobei ein vierstufiger Prozess durchlaufen wird. Nach der Bildung des NHC-Addukts erfolgt die Übertragung eines Hydrids auf das Carbenkohlenstoffatom. Durch Insertion eines Boratoms in die NC-Bindung des Carbenrings wird eine Spiroverbindung gebildet und im letzten Schritt folgt die Spaltung der BB-Bindung durch Insertion des ehemaligen Carbenkohlenstoffatoms, was zur Bildung der Bicyclen fĂŒhrt.In the present work the synthesis, functionalization and reactivity of 1,4,2,3-diazadiborinines was investigated. Initially, bis(dimethylamino)-substituted diazadiborinines with different residues on the nitrogen atoms were to be synthesized, whose further functionalization was later in focus. The synthesis was performed by reduction of 1,4-diazabutadienes with elemental lithium and subsequent salt elimination reaction with B2(NMe2)2Cl2. Thus, the monocyclic four N,N'-diaryl-substituted diazadiborinines and one alkyl-substituted diazadiborinine could be prepared. By established methods of diborane(4) chemistry, these were converted into their halogen derivatives (Cl, Br, I). From these, three 2,3-diazido-1,4,2,3-diazadiborinines could be prepared by reaction with TMSN3 from the dihalogen derivatives. These represent the first isolated diborane(4)azide compounds. The synthesis of a bicyclic naphthalene isoster was also successful, which could again be successfully converted into its halogen derivatives as well as the diazdido derivative. An insight into the mechanism of 1,4,2,3-diazadiborinine formation was gained by isolating a diazadiboretidine intermediate, which is formed by double salt elimination. However, this proved to be metastable and rearranged to the six-membered ring of diazadiborinine. Quantum chemical calculations supported the experimental findings. Via commutation reactions, a large number of B,B'-unsymmetrically substituted diazadiborinines could be represented and isolated. Depending on the starting materials used, either equilibrium reactions or quantitative conversions were observed. The reactivity of the novel diazidodiboranes(4) to Lewis bases was also investigated. Both the monocyclic diazadiborinine and the benzodiazadiborinine could be converted with NHC bases to the five different adducts. Under thermal stress a Staudinger-like reaction was observed in the monocyclic adducts, which led to the formation of guanadine-substituted diboranes(4) with the release of N2. However, the benzodiazadiborinine adducts showed a completely different reactivity. Here, a ring reduction reaction took place with formation of diazaborols, which were formed by migration of an azide function to the NHC-stabilized boron atom. In this way, three 1,1-diamino-2,2-diazidodiboranes(5) could be isolated. While no selective reaction was observed during the reaction of the naphthalene derivative with cAAC, the monocyclic diazadiborinine reacted with two equivalents of cAAC. In this case, the first carbon caused a Staudinger-like reaction, which led to the release of dinitrogen to formamidine. The second azide group was coordinated at the Îł\gamma nitrogen atom by another equivalent cAAC. In further reactivity studies the generation of transient iminoboranes from diazidodiazadiborinines was investigated. The diazides showed a highly selective reaction behavior at temperatures above 150 °C and converted to 1,3,2,4-diazadiboretidine with the release of dinitrogen. This was achieved by dimerization of an intermediately formed seven-membered endocyclic iminoborane. The mechanism for the formation of the transient iminoboranes was investigated by quantum chemical methods on the basis of two possible formation pathways. In the last chapter the reactivity of dihydrodiazadiborinine towards NHC and cAAC Lewis bases were investigated. The reaction with cAAC resulted in B-H bond activation by the carbene carbon atom, which is thought to be via an adduct species. No adduct formation was observed with the saturated NHC SIMes either, although such an intermediate is likely to be passed through. However, a bicyclic molecule formed by double ring extension was identified as the product of the reaction. Three adducts were isolated with unsaturated NHCs, but they were only metastable and rearranged into bicyclic compounds upon heating. The rearrangement products were further converted back to adducts by coordinating another equivalent IMe to the B-H functionality. The formation of the two bicyclic compounds was also investigated by quantum chemical methods, whereby a four-step process is used. After formation of the NHC adduct, a hydride is transferred to the carbene carbon atom. By insertion of a boron atom into the NC bond of the carbene ring a spiro compound is formed and in the last step the BB bond is cleaved by insertion of the former carbene carbon atom, which leads to the formation of the bicycles

    B–B Cleavage and Ring-Expansion of a 1,4,2,3-Diazadiborinine with N-Heterocyclic Carbenes

    No full text
    A 1,4,2,3‐diazadiborinine derivative was found to form Lewis adducts with strong two‐electron donors such as N‐heterocyclic and cyclic (alkyl)(amino)carbenes. Depending on the donor, some of these Lewis pairs are thermally unstable, converting to sole B,N‐embedded products upon gentle heating. The products of these reactions, which have been fully characterized by NMR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction, were identified as B,N‐heterocycles with fused 1,5,2,4‐diazadiborepine and 1,4,2‐diazaborinine rings. Computational modelling of the reaction mechanism provides insight into the formation of these unique structures, suggesting that a series of B−H, C−N, and B−B bond activation steps are responsible for these “intercalation” reactions between the 1,4,2,3‐diazadiborinine and NHCs

    Facile Access to Substituted 1,4‐Diaza‐2,3‐Diborinines

    No full text
    Several bis(dimethylamino)‐substituted 1,4‐diaza‐2,3‐diborinines (DADBs) were synthesized with variable substituents at the backbone nitrogen atoms. By reaction with HCl or BX3_{3} (X=Br, I), these species were successfully converted into their synthetically more useful halide congeners. The high versatility of the generated B−X bonds in further functionalization reactions at the boron centers was demonstrated by means of salt elimination (MeLi) and commutation (NMe2_{2} DADBs) reactions, thus making the DADB system a general structural motif in diborane(4) chemistry. A total of 18 DADB derivatives were characterized in the solid state by X‐ray diffraction, revealing a strong dependence of the heterocyclic bonding parameters from the exocyclic substitution pattern at boron. According to our experiments towards the realization of a Dipp‐substituted, sterically encumbered DADB, the mechanism of DADB formation proceeds via a transient four‐membered azadiboretidine intermediate that subsequently undergoes ring expansion to afford the six‐membered DADB heterocycle

    Facile Access to Substituted 1,4‐Diaza‐2,3‐Diborinines

    No full text
    Several bis(dimethylamino)‐substituted 1,4‐diaza‐2,3‐diborinines (DADBs) were synthesized with variable substituents at the backbone nitrogen atoms. By reaction with HCl or BX3_{3} (X=Br, I), these species were successfully converted into their synthetically more useful halide congeners. The high versatility of the generated B−X bonds in further functionalization reactions at the boron centers was demonstrated by means of salt elimination (MeLi) and commutation (NMe2_{2} DADBs) reactions, thus making the DADB system a general structural motif in diborane(4) chemistry. A total of 18 DADB derivatives were characterized in the solid state by X‐ray diffraction, revealing a strong dependence of the heterocyclic bonding parameters from the exocyclic substitution pattern at boron. According to our experiments towards the realization of a Dipp‐substituted, sterically encumbered DADB, the mechanism of DADB formation proceeds via a transient four‐membered azadiboretidine intermediate that subsequently undergoes ring expansion to afford the six‐membered DADB heterocycle

    Reaction of Dihalodiboranes(4) with N-Heterocyclic Silylenes: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes

    Get PDF
    Dihalodiboranes(4) react with an N-heterocyclic silylene (NHSi) to generate NHSi-adducts of 1-aryl-2-silyl-1,2-diboraindanes as confirmed by X-ray crystallography, featuring the functionalization of both B–X (X = halogen) bonds and a C–H bond under mild conditions. Coordination of a third NHSi to the proposed 1,1-diaryl- 2,2-disilyldiborane(4) intermediates, generated by a two-fold B–X insertion, may be crucial for the C–H borylation that leads to the final products. Notably, our results demonstrate the first C–H borylation with a strong B–F bond activated by silylene insertion

    Diborane(4) Azides: Surprisingly Stable Sources of Transient Iminoboranes

    No full text
    Herein we describe the first examples of isolable electron-precise diboranes(4) that bear azide moieties: the acyclic 1,2-diazido-1,2-bis(dimethylamino)diborane(4) and the cyclic 1,4-diaryl-2,3-diazido-1,4-diaza-2,3-diborinines (aryl=mesityl, 2,6-xylyl, 4-tolyl). The reported examples are not only stable enough to be observed and isolated (putative transient diborane(4) azides previously reported by our group spontaneously decompose even below room temperature), but some of them are even robust enough to undergo controlled pyrolysis without explosive decomposition at temperatures well above 100 °C. In two cases, the controlled pyrolysis allows the isolation of complex diazaboretidines, which are the apparent dimerization products of endocyclic boryl-iminoboranes
    corecore