2 research outputs found

    Bird migration in space and time: chain migration by Eurasian curlew Numenius arquata arquata along the East Atlantic Flyway

    Get PDF
    Migration patterns in birds vary in space and time. Spatial patterns include chain, leapfrog and telescopic migration. Temporal patterns such as migration duration, number, and duration of stopovers may vary according to breeding latitude, sex, and season. This study aimed to verify these patterns in a long-distance migrant, the Eurasian curlew Numenius arquata arquata, and to provide a synopsis of spatio-temporal migration patterns in this species of concern throughout the East Atlantic Flyway. We tagged 85 adults with GPS-data loggers in Germany, Poland, France and Estonia between 2013 and 2019. We computed the distance flown, linear loxodromic distance, duration, stopover number, total stopover duration, mean stopover duration, departure time and arrival time for 177 out of 187 tracks. On average (± standard deviation), spring migration occurred from 4 to 14 April (10.2 ± 8.4 days), curlews flew 3.623 ± 1.366 km, and had 5.8 ± 3.6 stopovers, with a duration of 29.4 ± 38.2 h per stopover, while autumn migration occurred from 18 to 29 June (10.9 ± 9.9 days), curlews flew 3.362 ± 1.351 km, and had 5.4 ± 4.0 stopovers, with 31.8 ± 32.3 h per stopover. Curlews displayed chain migration because wintering curlews maintained the latitudinal sequence to their breeding sites. Southern curlews had a longer nesting period due to their earlier arrivals. While spring arrival at breeding sites did not differ between the sexes, in autumn females departed earlier than males. Migration duration and distance, as well as stopover number and duration, showed a significant increase with breeding site latitude but did not differ between the sexes or between spring and autumn migrations, suggesting that curlews took a comparable amount of time migrating during both seasons. The high site faithfulness in curlews suggests that rapid autumn migration allows them to return to defend their winter foraging areas

    Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity

    No full text
    A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed
    corecore