341 research outputs found

    Topological relations in an Athapaskan language

    Get PDF
    PM641 , Athapascan language

    Linguistic Categorization of Topological Spatial Relations (TOPOI – Towards a Historical Epistemology of Space)

    Get PDF

    A critical test of empirical mass loss formulae applied to individual giants and supergiants

    Full text link
    To test our new, improved Reimers-type mass-loss relation, given by Schroder & Cuntz in 2005 (ApJL 630, L73), we take a look at the best studied galactic giants and supergiants - particularly those with spatially resolved circumstellar shells and winds, obtained directly or by means of a companion acting as a probing light source. Together with well-known physical parameters, the selected stars provide the most powerful and critical observational venues for assessing the validity of parameterized mass-loss relations for cool winds not driven by molecules or dust. In this study, star by star, we compare our previously published relation with the original Reimers relation (1975), the Lamers relation (1981), and the two relations by de Jager and his group (1988, 1990). The input data, especially the stellar masses, have been constrained using detailed stellar evolution models. We find that only the relationship by Schroder & Cuntz agrees, within the error bars, with the observed mass-loss rates for all giants and supergiants.Comment: 11 pages, 5 Figs. accepted by Astronomy & Astrophysic

    Optical Properties of Vanadium in 4H Silicon Carbide for Quantum Technology

    Full text link
    We study the optical properties of tetravalent vanadium impurities in 4H silicon carbide (4H SiC). Emission from two crystalline sites is observed at wavelengths of 1.28 \mum and 1.33 \mum, with optical lifetimes of 163 ns and 43 ns. Group theory and ab initio density functional supercell calculations enable unequivocal site assignment and shed light on the spectral features of the defects. We conclude with a brief outlook on applications in quantum photonics

    A physically motivated analytical expression for the temperature dependence of the zero-field splitting of the nitrogen-vacancy center in diamond

    Full text link
    The temperature dependence of the zero-field splitting (ZFS) between the ∣ms=0⟩|m_{s}=0\rangle and ∣ms=±1⟩|m_{s}=\pm 1\rangle levels of the nitrogen-vacancy (NV) center's electronic ground-state spin triplet can be used as a robust nanoscale thermometer in a broad range of environments. However, despite numerous measurements of this dependence in different temperature ranges, to our knowledge no analytical expression has been put forward that captures the scaling of the ZFS of the NV center across all relevant temperatures. Here we present a simple, analytical, and physically motivated expression for the temperature dependence of the NV center's ZFS that matches all experimental observations, in which the ZFS shifts in proportion to the occupation numbers of two representative phonon modes. In contrast to prior models our expression does not diverge outside the regions of fitting. We show that our model quantitatively matches experimental measurements of the ZFS from 15 to 500 K in single NV centers in ultra-pure bulk diamond, and we compare our model and measurements to prior models and experimental data.Comment: Main text: 7 pages, 4 figures, 1 table, 44 references. Supplemental Material: 12 pages, 5 figures, 2 tables, 23 reference
    • …
    corecore