222 research outputs found

    Prefrontal Neural Activity When Feedback Is Not Relevant to Adjust Performance

    Get PDF
    It has been shown that the rostral cingulate zone (RCZ) in humans uses both positive and negative feedback to evaluate performance and to flexibly adjust behaviour. Less is known on how the feedback types are processed by the RCZ and other prefrontal brain areas, when feedback can only be used to evaluate performance, but cannot be used to adjust behaviour. The present fMRI study aimed at investigating feedback that can only be used to evaluate performance in a word-learning paradigm. One group of volunteers (N = 17) received informative, performance-dependent positive or negative feedback after each trial. Since new words had to be learnt in each trial, the feedback could not be used for task-specific adaptations. The other group (N = 17) always received non-informative feedback, providing neither information about performance nor about possible task-specific adaptations. Effects of the informational value of feedback were assessed between-subjects, comparing trials with positive and negative informative feedback to non-informative feedback. Effects of feedback valence were assessed by comparing neural activity to positive and negative feedback within the informative-feedback group. Our results show that several prefrontal regions, including the pre-SMA, the inferior frontal cortex and the insula were sensitive to both, the informational value and the valence aspect of the feedback with stronger activations to informative as compared to non-informative feedback and to informative negative compared to informative positive feedback. The only exception was RCZ which was sensitive to the informational value of the feedback, but not to feedback valence. The findings indicate that outcome information per se is sufficient to activate prefrontal brain regions, with the RCZ being the only prefrontal brain region which is equally sensitive to positive and negative feedback

    Checking ozone amounts by measurements of UV-irradiances

    Get PDF
    Absolute measurements of UV-irradiances in Germany and New Zealand are used to determine the total amounts of ozone. UV-irradiances measured and calculated for clear skies and for solar zenith angles less than 60 deg generally show a good accordance. The UVB-irradiances, however, show that the actual Dobson values are about 5 percent higher in Germany and about 3 percent higher in New Zealand compared to those obtained by our method. Possible reasons for these deviations are discussed

    Dysfunction of the hypothalamic-pituitary adrenal axis and its influence on aging: the role of the hypothalamus

    Get PDF
    As part of the hypothalamic-pituitary adrenal (HPA) axis, the hypothalamus exerts pivotal influence on metabolic and endocrine homeostasis. With age, these processes are subject to considerable change, resulting in increased prevalence of physical disability and cardiac disorders. Yet, research on the aging human hypothalamus is lacking. To assess detailed hypothalamic microstructure in middle adulthood, 39 healthy participants (35-65 years) underwent comprehensive structural magnetic resonance imaging. In addition, we studied HPA axis dysfunction proxied by hair cortisol and waist circumference as potential risk factors for hypothalamic alterations. We provide first evidence of regionally different hypothalamic microstructure, with age effects in its anterior-superior subunit, a critical area for HPA axis regulation. Further, we report that waist circumference was related to increased free water and decreased iron content in this region. In age, hair cortisol was additionally associated with free water content, such that older participants with higher cortisol levels were more vulnerable to free water content increase than younger participants. Overall, our results suggest no general age-related decline in hypothalamic microstructure. Instead, older individuals could be more susceptible to risk factors of hypothalamic decline especially in the anterior-superior subregion, including HPA axis dysfunction, indicating the importance of endocrine and stress management in age

    Effects of Exogenous Auditory Attention on Temporal and Spectral Resolution

    Get PDF
    Previous research in the visual domain suggests that exogenous attention in form of peripheral cueing increases spatial but lowers temporal resolution. It is unclear whether this effect transfers to other sensory modalities. Here, we tested the effects of exogenous attention on temporal and spectral resolution in the auditory domain. Eighteen young, normal-hearing adults were tested in both gap and frequency change detection tasks with exogenous cuing. Benefits of valid cuing were only present in the gap detection task while costs of invalid cuing were observed in both tasks. Our results suggest that exogenous attention in the auditory system improves temporal resolution without compromising spectral resolution

    Acute Effects of Aerobic Exercise on Executive Function and Attention in Adult Patients With ADHD

    Get PDF
    Aerobic exercise can improve cognitive functions in healthy individuals and in various clinical groups, which might be particularly relevant for patients with ADHD. This study investigated the effects of a single bout of aerobic exercise on attention and executive functions in adult patients with ADHD, including functional MRI to examine the underlying neural mechanisms. On two different days, 23 adult patients with ADHD and 23 matched healthy controls performed in a flanker task, while functional MR images were collected, following 30 min of continuous stationary cycling with moderate intensity as well as after a control condition (watching a movie). Behavioral performance and brain activation were tested for differences between groups and conditions and for interactions to investigate whether exercise improves executive function to a greater extent in patients compared to healthy controls. Exercise significantly improved reaction times in congruent and incongruent trials of the flanker task in patients with ADHD but not in healthy controls. We found no changes in brain activation between the two conditions for either group. However, a subgroup analysis of ADHD patients with a higher degree of cardiorespiratory fitness revealed decreased activation in premotor areas during congruent trials and in premotor and medial frontal cortex during incongruent trials in the exercise compared to the control condition. Our results indicate exercise-induced improvements in attention and processing speed in patients with ADHD, demonstrating that adult patients with ADHD may benefit from an acute bout of exercise. These findings could be of high relevance for developing alternative treatment approaches for ADHD. In addition, results of the current study contribute to elucidate the neurophysiological mechanisms underlying the beneficial effects of exercise on cognition and to better understand the role of cardiorespiratory fitness on these effects

    How dopamine shapes representations in auditory cortex

    Get PDF
    The neural representation of sound in the auditory cortex is not invariably predetermined by its  acoustical properties, but it is constantly reshaped while the listener acquires new experiences. Such plastic changes are a prerequisite for lifelong learning and allow some degree of rehabilitation after brain injuries. Several neurotransmitter systems modulate these plastic changes. In this paper, we focus on how the neurotransmitter dopamine modulates learning-related plasticity in auditory cortex, and how animal and human research can complement each other in providing an experimental approach that has relevance for studying mechanisms of recovery of functio

    The Contribution of Cognitive Factors to Individual Differences in Understanding Noise-Vocoded Speech in Young and Older Adults

    Get PDF
    Noise-vocoded speech is commonly used to simulate the sensation after cochlear implantation as it consists of spectrally degraded speech. High individual variability exists in learning to understand both noise-vocoded speech and speech perceived through a cochlear implant (CI). This variability is partly ascribed to differing cognitive abilities like working memory, verbal skills or attention. Although clinically highly relevant, up to now, no consensus has been achieved about which cognitive factors exactly predict the intelligibility of speech in noise-vocoded situations in healthy subjects or in patients after cochlear implantation. We aimed to establish a test battery that can be used to predict speech understanding in patients prior to receiving a CI. Young and old healthy listeners completed a noise-vocoded speech test in addition to cognitive tests tapping on verbal memory, working memory, lexicon and retrieval skills as well as cognitive flexibility and attention. Partial-least-squares analysis revealed that six variables were important to significantly predict vocoded-speech performance. These were the ability to perceive visually degraded speech tested by the Text Reception Threshold, vocabulary size assessed with the Multiple Choice Word Test, working memory gauged with the Operation Span Test, verbal learning and recall of the Verbal Learning and Retention Test and task switching abilities tested by the Comprehensive Trail-Making Test. Thus, these cognitive abilities explain individual differences in noise-vocoded speech understanding and should be considered when aiming to predict hearing-aid outcome

    Dysfunction of the hypothalamic-pituitary adrenal axis and its influence on aging: the role of the hypothalamus

    Get PDF
    As part of the hypothalamic-pituitary adrenal (HPA) axis, the hypothalamus exerts pivotal influence on metabolic and endocrine homeostasis. With age, these processes are subject to considerable change, resulting in increased prevalence of physical disability and cardiac disorders. Yet, research on the aging human hypothalamus is lacking. To assess detailed hypothalamic microstructure in middle adulthood, 39 healthy participants (35–65 years) underwent comprehensive structural magnetic resonance imaging. In addition, we studied HPA axis dysfunction proxied by hair cortisol and waist circumference as potential risk factors for hypothalamic alterations. We provide first evidence of regionally different hypothalamic microstructure, with age effects in its anterior–superior subunit, a critical area for HPA axis regulation. Further, we report that waist circumference was related to increased free water and decreased iron content in this region. In age, hair cortisol was additionally associated with free water content, such that older participants with higher cortisol levels were more vulnerable to free water content increase than younger participants. Overall, our results suggest no general age-related decline in hypothalamic microstructure. Instead, older individuals could be more susceptible to risk factors of hypothalamic decline especially in the anterior–superior subregion, including HPA axis dysfunction, indicating the importance of endocrine and stress management in age
    • …
    corecore