15 research outputs found

    Identification and Detection of a Peptide Biomarker and Its Enantiomer by Nanopore

    No full text
    International audienceUntil now, no fast, low-cost, and direct technique exists to identify and detect protein/peptide enantiomers, because their mass and charge are identical. They are essential since L- and D-protein enantiomers have different biological activities due to their unique conformations. Enantiomers have potential for diagnostic purposes for several diseases or normal bodily functions but have yet to be utilized. This work uses an aerolysin nanopore and electrical detection to identify vasopressin enantiomers, L-AVP and D-AVP, associated with different biological processes and pathologies. We show their identification according to their conformations, in either native or reducing conditions, using their specific electrical signature. To improve their identification, we used a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used the Monte Carlo prediction to assign each event type to a specific L- or DAVP enantiomer

    Dynamics of a polyelectrolyte through aerolysin channel as a function of applied voltage and concentration

    No full text
    International audienceWe describe the behaviour of a polyelectrolyte in confined geometry. The transport of a polyelectrolyte, dextran sulfate, through a recombinant protein channel, aerolysin, inserted into a planar lipid bilayer is studied as a function of applied voltage and polyelectrolyte concentration and chain length. The aerolysin pore has a weak geometry asymmetry, a high number of charged residues and the polyelectrolyte is strongly negatively charged. The resulting current blockades were characterized by short and long dwelling times. Their frequency varies exponentially as a function of applied voltage and linearly as a function of polyelectrolyte concentration. The long blockade duration decreases exponentially when the electrical force increases. The ratio of the population of short events to the one of long events decreases when the applied voltage increases and displays an exponential variation. The long residence time increases with the polyelectrolyte chain length. We measure a reduction of the effective charge of the polyelectrolyte at the pore entry and inside the channel. For a fixed applied voltage, + / - 100 mV, at both sides of the protein pore entrance, the events frequency is similar as a function of dextran sulfate concentration. The mean blockade durations are independent of polyelectrolyte concentration and are similar for both entrances of the pore and remain constant as a function of the electrical force

    Characterizing single sinonasal squamous cell carcinoma using dielectrophoresis and electrorotation

    No full text
    International audienceWe show the capture and analysis single cells, in particular human sinonasal squamous cell carcinomas (SCC), by the combination of di-electrophoresis (DEP) force and electrorotation, within a microfluidic device. A set of 4 planar polynomial electrodes was employed to perform nDEP trapping of two lines tumor cell with different invasivity, named NC5 and NC7. Once captured at the center of the electrodes set, electrorotation was served to extract the rotational speed's spectra. From the spectra, their electrophysiological properties can be estimated

    Elasticity, Adhesion, and Tether Extrusion on Breast Cancer Cells Provide a Signature of Their Invasive Potential

    Get PDF
    International audienceWe use single-cell force spectroscopy to compare elasticity, adhesion, and tether extrusion on four breast cancer cell lines with an increasing invasive potential. We perform cell attachment/detachment experiments either on fibronectin or on another cell using an atomic force microscope. Our study on the membrane tether formation from cancer cells show that they are easier to extrude from aggressive invasive cells. Measured elastic modulus values confirm that more invasive cells are softer. Moreover, the adhesion force increases with the invasive potential. Our results provide a mechanical signature of breast cancer cells that correlates with their invasivity

    Biomimetic ion channels formation by emulsion based on chemically modified cyclodextrin nanotubes

    No full text
    International audienceBiomimetic ion channels can be made to display the high sensitivity of natural protein nanopores and to develop new properties as a function of the material used. How to design the best future biomimetic channels? The main challenges are to control their sensitivity, as well as their syntheses, chemical modifications, insertion and lifetime in a lipid membrane. To address these challenges, we have recently designed short cyclodextrin nanotubes characterized by mass spectrometry and high-resolution transmission electron microscopy. They form non-permanent ion channels in lipid bilayers. Here we show how to improve the nanotube insertion in order to limit multiple insertions, how to stabilize biomimetic channels into the membrane, and how to understand the ion dynamics in confined medium scale

    Versatile cyclodextrin nanotube synthesis with functional anchors for efficient ion channel formation: design, characterization and ion conductance

    No full text
    International audienceBiomimetic ion channels with different materials have been extensively designed to study the dynamics in a confined medium. These channels allow the development of several applications, such as ultra-fast sequencing and biomarker detection. When considering their synthesis, the use of cheap, non-cytotoxic and readily available materials is an increasing priority. Cyclodextrins, in supramolecular architectures, are widely utilized for pharmaceutical and biotechnological applications. Recent work has shown that short nanotubes (NTs) based on alpha-cyclodextrin (α-CD) assemble transient ion channels into membranes without cytotoxicity. In this study, we probe the influence of new cyclodextrin NT structural parameters and chemical modifications on channel formation, stability and electrical conductance. We report the successful synthesis of β-and γ-cyclodextrin nanotubes (β-CDNTs and γ-CDNTs), as evidenced by mass-spectrometry and high-resolution transmission electron microscopy. CDNTs were characterized by their length, diameter and number of CDs. Two hydrophobic groups, silylated or vinylated, were attached along the γ-CDNTs, improving the insertion time into the membrane. All NTs synthesized form spontaneous biomimetic ion channels. The hydrophobic NTs exhibit higher stability in membranes. Electrophysiological measurements show that ion transport is the main contribution of NT conductance and that the ion energy penalty for the entry into these NTs is similar to that of biological channels
    corecore