254 research outputs found

    Improved Spacecraft Materials for Radiation Shielding

    Get PDF
    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials

    Relativistic theories of interacting fields and fluids

    Full text link
    We investigate divergence-type theories (DTT) describing the dissipative interaction between a field and a fluid. We look for theories which, under equilibrium conditions, reduce to the theory of a Klein-Gordon scalar field and a perfect fluid. We show that the requirements of causality and positivity of entropy production put non-trivial constarints to the structure of the interaction terms. These theories provide a basis for the phenomonological study of the reheating period.Comment: 17 pages, no figures, minor corrections mad

    Issues In Space Radiation Protection: Galactic Cosmic Rays

    Get PDF
    When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes

    Geometrothermodynamics of five dimensional black holes in Einstein-Gauss-Bonnet-theory

    Full text link
    We investigate the thermodynamic properties of 5D static and spherically symmetric black holes in (i) Einstein-Maxwell-Gauss-Bonnet theory, (ii) Einstein-Maxwell-Gauss-Bonnet theory with negative cosmological constant, and in (iii) Einstein-Yang-Mills-Gauss-Bonnet theory. To formulate the thermodynamics of these black holes we use the Bekenstein-Hawking entropy relation and, alternatively, a modified entropy formula which follows from the first law of thermodynamics of black holes. The results of both approaches are not equivalent. Using the formalism of geometrothermodynamics, we introduce in the manifold of equilibrium states a Legendre invariant metric for each black hole and for each thermodynamic approach, and show that the thermodynamic curvature diverges at those points where the temperature vanishes and the heat capacity diverges.Comment: New sections added, references adde

    “They can do whatever they want”: Meanings of receiving psychiatric care based on a common staff approach

    Get PDF
    This study deepens our understanding of how patients, when cared for in a psychiatric ward, experience situations that involve being handled according to a common staff approach. Interviews with nine former psychiatric in-patients were analyzed using a phenomenological–hermeneutic method to illuminate the lived experience of receiving care based on a common staff approach. The results revealed several meanings: discovering that you are as subjected to a common staff approach, becoming aware that no one cares, becoming aware that your freedom is restricted, being afflicted, becoming aware that a common staff approach is not applied by all staff, and feeling safe because someone else is responsible. The comprehensive understanding was that the patient's understanding of being cared for according to a common staff approach was to be seen and treated in accordance with others' beliefs and valuations, not in line with the patients' own self-image, while experiencing feelings of affliction

    Effect of Different Factors on Proliferation of Antler Cells, Cultured In Vitro

    Get PDF
    Antlers as a potential model for bone growth and development have become an object of rising interest. To elucidate processes explaining how antler growth is regulated, in vitro cultures have been established. However, until now, there has been no standard method to cultivate antler cells and in vitro results are often opposite to those reported in vivo. In addition, many factors which are often not taken into account under in vitro conditions may play an important role in the development of antler cells. In this study we investigated the effects of the antler growth stage, the male individuality, passaged versus primary cultures and the effect of foetal calf serum concentrations on proliferative potential of mixed antler cell cultures in vitro, derived from regenerating antlers of red deer males (Cervus elaphus). The proliferation potential of antler cells was measured by incorporation of 3H thymidine. Our results demonstrate that there is no significant effect of the antler growth stage, whereas male individuality and all other examined factors significantly affected antler cell proliferation. Furthermore, our results suggest that primary cultures may better represent in vivo conditions and processes occurring in regenerating antlers. In conclusion, before all main factors affecting antler cell proliferation in vitro will be satisfactorily investigated, results of in vitro studies focused on hormonal regulation of antler growth should be taken with extreme caution

    Effects of soil warming and nitrogen foliar applications on bud burst of black spruce

    Get PDF
    Key message: In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site. Abstract: The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease
    corecore