369 research outputs found
On the subspace learning for network attack detection
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2019.O custo com todos os tipos de ciberataques tem crescido nas organizações. A casa branca do
goveno norte americano estima que atividades cibernéticas maliciosas custaram em 2016 um
valor entre US109 bilhões para a economia norte americana. Recentemente, é
possível observar um crescimento no número de ataques de negação de serviço, botnets,
invasões e ransomware.
A Accenture argumenta que 89% dos entrevistados em uma pesquisa acreditam que tecnologias
como inteligência artificial, aprendizagem de máquina e análise baseada em comportamentos,
são essenciais para a segurança das organizações. É possível adotar abordagens semisupervisionada e não-supervisionadas para implementar análises baseadas em
comportamentos, que podem ser aplicadas na detecção de anomalias em tráfego de rede, sem a
ncessidade de dados de ataques para treinamento.
Esquemas de processamento de sinais têm sido aplicados na detecção de tráfegos maliciosos
em redes de computadores, através de abordagens não-supervisionadas que mostram ganhos
na detecção de ataques de rede e na detecção e anomalias.
A detecção de anomalias pode ser desafiadora em cenários de dados desbalanceados, que são
casos com raras ocorrências de anomalias em comparação com o número de eventos normais.
O desbalanceamento entre classes pode comprometer o desempenho de algoritmos traficionais
de classificação, através de um viés para a classe predominante, motivando o desenvolvimento
de algoritmos para detecção de anomalias em dados desbalanceados.
Alguns algoritmos amplamente utilizados na detecção de anomalias assumem que observações
legítimas seguem uma distribuição Gaussiana. Entretanto, esta suposição pode não ser
observada na análise de tráfego de rede, que tem suas variáveis usualmente caracterizadas por
distribuições assimétricas
ou de cauda pesada. Desta forma, algoritmos de detecção de anomalias têm atraído pesquisas
para se tornarem mais discriminativos em distribuições assimétricas, como também para se
tornarem mais robustos à corrupção e capazes de lidar com problemas causados pelo
desbalanceamento de dados.
Como uma primeira contribuição, foi proposta a Autosimilaridade (Eigensimilarity em inglês), que
é uma abordagem baseada em conceitos de processamento de sinais com o objetivo de detectar
tráfego malicioso em redes de computadores. Foi avaliada a acurácia e o desempenho da
abordagem proposta através de cenários simulados e dos dados do DARPA 1998. Os
experimentos mostram que Autosimilaridade detecta os ataques synflood, fraggle e varredura de
portas com precisão, com detalhes e de uma forma automática e cega, i.e. em uma abordagem
não-supervisionada.
Considerando que a assimetria de distribuições de dados podem melhorar a detecção de
anomalias em dados desbalanceados e assimétricos, como no caso de tráfego de rede, foi
proposta a Análise Robusta de Componentes Principais baseada em Momentos (ARCP-m), que
é uma abordagem baseada em distâncias entre observações contaminadas e momentos
calculados a partir subespaços robustos aprendidos através da Análise Robusta de
Componentes Principais (ARCP), com o objetivo de detectar anomalias em dados assimétricos e
em tráfego de rede.
Foi avaliada a acurácia do ARCP-m para detecção de anomalias em dados simulados, com
distribuições assimétricas e de cauda pesada, como também para os dados do CTU-13. Os
experimentos comparam nossa proposta com algoritmos amplamente utilizados para detecção
de anomalias e mostra que a distância entre estimativas robustas e observações contaminadas
pode melhorar a detecção de anomalias em dados assimétricos e a detecção de ataques de
rede.
Adicionalmente, foi proposta uma arquitetura e abordagem para avaliar uma prova de conceito
da Autosimilaridade para a detecção de comportamentos maliciosos em aplicações móveis
corporativas. Neste sentido, foram propostos cenários, variáveis e abordagem para a análise de
ameaças, como também foi avaliado o tempo de processamento necessário para a execução do
Autosimilaridade em dispositivos móveis.The cost of all types of cyberattacks is increasing for global organizations. The Whitehouse of the
U.S. government estimates that malicious cyber activity cost the U.S. economy between US109 billion in 2016. Recently, it is possible to observe an increasing in numbers of
Denial of Service (DoS), botnets, malicious insider and ransomware attacks.
Accenture consulting argues that 89% of survey respondents believe breakthrough technologies,
like artificial intelligence, machine learning and user behavior analytics, are essential for securing
their organizations. To face adversarial models, novel network attacks and counter measures of
attackers to avoid detection, it is possible to adopt unsupervised or semi-supervised approaches
for network anomaly detection, by means of behavioral analysis, where known anomalies are not
necessaries for training models.
Signal processing schemes have been applied to detect malicious traffic in computer networks
through unsupervised approaches, showing advances in network traffic analysis, in network
attack detection, and in network intrusion detection systems.
Anomalies can be hard to identify and separate from normal data due to the rare occurrences of
anomalies in comparison to normal events. The imbalanced data can compromise the
performance of most standard learning algorithms, creating bias or unfair weight to learn from the
majority class and reducing detection capacity of anomalies that are characterized by the minority
class. Therefore, anomaly detection algorithms have to be highly discriminating, robust to
corruption and able to deal with the imbalanced data problem.
Some widely adopted algorithms for anomaly detection assume a Gaussian distributed data for
legitimate observations, however this assumption may not be observed in network traffic, which is
usually characterized by skewed and heavy-tailed distributions.
As a first important contribution, we propose the Eigensimilarity, which is an approach based on
signal processing concepts applied to detection of malicious traffic in computer networks. We
evaluate the accuracy and performance of the proposed framework applied to a simulated
scenario and to the DARPA 1998 data set. The performed experiments show that synflood,
fraggle and port scan attacks can be detected accurately by Eigensimilarity and with great detail,
in an automatic and blind fashion, i.e. in an unsupervised approach.
Considering that the skewness improves anomaly detection in imbalanced and skewed data,
such as network traffic, we propose the Moment-based Robust Principal Component Analysis (mRPCA) for network attack detection. The m-RPCA is a framework based on distances between
contaminated observations and moments computed from a robust subspace learned by Robust
Principal Component Analysis (RPCA), in order to detect anomalies from skewed data and
network traffic. We evaluate the accuracy of the m-RPCA for anomaly detection on simulated
data sets, with skewed and heavy-tailed distributions, and for the CTU-13 data set. The
Experimental evaluation compares our proposal to widely adopted algorithms for anomaly
detection and shows that the distance between robust estimates and contaminated observations
can improve the anomaly detection on skewed data and the network attack detection.
Moreover, we propose an architecture and approach to evaluate a proof of concept of
Eigensimilarity for malicious behavior detection on mobile applications, in order to detect possible
threats in offline corporate mobile client. We propose scenarios, features and approaches for
threat analysis by means of Eigensimilarity, and evaluate the processing time required for
Eigensimilarity execution in mobile devices
Análise da localização das strip malls sob o conceito de mobilidade urbana na cidade de Uberlândia - MG.
Strip Malls have been standing out as a new concept of enterprise nowadays that stands out for its strategic location in the noblest areas of a region. The main objective of the research is to analyze the location of strip males under the concept of Urban Mobility and its distributions throughout the city of Uberlândia -MG, and its area of influence to its surroundings. For this, radii of influence were defined for each of them using the creation of buffers. Thus, it was possible to have a better visualization of their coverage areas and a greater understanding of their disposition in the urban fabric, which allowed the understanding of the attractiveness that they exert on the surrounding population and also the analysis of their strategic locations of implementation. For this purpose, data from the Brazilian Institute of Geography and Statistics were used, as well as software such as AutoCad, Google Earth and QGIS 3.28.11. However, it found that strip malls in Uberlândia are concentrated in two of the five sectors of the city, in the central sector and mainly in the south sector, all of which are in one of the main flow routes of the city, thus having excellent access roadsTrabalho de Conclusão de Curso (Graduação)As strip malls vêm se destacando como um novo conceito de empreendimento na atualidade que se destaca por sua localização estratégica em áreas mais nobres de uma região. A pesquisa tem como objetivo central realizar a análise da localização das strip malls sob o conceito de Mobilidade Urbana e suas distribuições pela cidade de Uberlândia -MG, e sua área de influência ao seu entorno. Para isso, definiu-se raios de influência para cada uma delas utilizando-se da criação de buffers. Assim, foi possível uma melhor visualização das suas áreas de abrangência e maior compreensão da disposição das mesmas pela malha urbana, o que permitiu o entendimento da atratividade que elas exercem sobre a população ao seu entorno e também da análise de suas localizações estratégicas de implantação. Para tal, foram utilizados dados do Instituto Brasileiro de Geografia e Estatística, assim como software como AutoCad, Google Earth e QGIS 3.28.11. Contudo, verificou que strip malls de Uberlândia se concentram em dois dos cinco setores da cidade, no setor central e principalmente setor sul, estando todas em uma das principais rotas de fluxo da cidade possuindo assim excelentes vias de acesso
Os papéis da ação política de o estado de São Paulo durante a ditadura militar de 1964-1985 / The roles of political action of the state of São Paulo during the military dictatorship of 1964-1985
Nas comemorações pelo fim da última ditadura militar no Brasil, os jornais que atuaram na época têm a oportunidade de contar suas narrativas e versões dos fatos ocorridos durante o período, sua atuação e os ataques que sofreram dos militares. Pesquisadores contestam as narrativas construídas por estes veículos de imprensa, que se identificam como defensores da liberdade política e de imprensa, apontando o silêncio que os veículos mantêm sobre os momentos em que apoiaram ativamente a instauração da ditadura militar. Este estudo faz uma revisão bibliográfica e de conteúdo para corroborar a tese de que nosso objeto de estudo, o jornal impresso O Estado de São Paulo, teve atuação política na consolidação e legitimação da ditadura militar, impactando diretamente sobre a percepção pública e formação de políticas da época.
Somatic Embryogenesis Induction in Leaf and Root Explants of Allophylus edulis (A.St.-Hil., Cambess. and A. Juss.) Radlk.
Allophylus edulis (A.St.-Hil., Cambess. and A. Juss.) Radlk., commonly known as cocum, belongs to the Sapindaceae family. This species is of great medicinal interest, with studies showing that its fruits have antioxidant, anti-cholinesterase, and cytotoxic activity. In addition, it is used in traditional medicine as an antidiarrheal, anti-inflammatory and antihypertensive. The objective of this study was to perform somatic embryogenesis in vitro from leaf and root explants of Allophylus edulis, using different 6-benzylaminopurine (BAP) concentrations combined with naphthalene acetic acid (NAA). All treatments exhibited 100% callus formation, except for the treatment without supplementation of growth regulators. The calluses developed in treatments from leaf explants showed up to two colors (brown and brown/cream), and the highest fresh and dry mass was observed in the treatment with 0.5 mg L-1 of BAP with 0.1 mg L-1 of NAA. There was no shoot formation from the leaf explants. The callogenesis in treatments from root segments showed callus formation with up to three colors (brown, brown/cream, and cream/green), and the highest fresh and dry mass was obtained when cultivated with 2.0 mg L-1 of BAP combined with 0.1 mg L-1 of NAA. These auxin and cytokinin concentrations also showed a higher number of shoots. The interaction between auxin and cytokinin is recommended to obtain somatic embryogenesis in root segments and callus with morphological characteristics suitable for organogenesis
“Lá vem você com seus larará”: Criolo e as negociações com o samba em Espiral de Ilusão
Este artigo reflete sobre a vinculação de artistas do RAP brasileiro ao samba, observando como esse fenômeno é atualizado em diferentes obras até culminar em um álbum inteiramente dedicado ao gênero musical, como é o caso de Espiral de Ilusão lançado por Criolo em 2017. Procurando compreender como esse processo se estabelece, e é percebido pelo público, articulamos um breve histórico do samba, assim como de artistas vinculados ao RAP que instituíram aproximações com a expressão sonora, a fim de apresentar um estudo de caso sobre a produção de sentidos do álbum Espiral de Ilusão no YouTube, por meio de conversações do público no canal do artista. A partir da Análise de Construção de Sentidos em Redes Digitais, entendemos que, embora haja um estranhamento da ausência do RAP na obra, ocorre um enaltecimento do samba, que parece estar vinculado a sua valorização no Brasil e a seus traços consonantes ao RAP, a partir de marcadores como território, classe e racialidad
Índice de massa corporal, reservas de energia e composição tecidual de cortes de cordeiros Corriedale
The objective of this work was to identify relationships of the body mass index (BMI) with the body energy reserves and tissue composition of shoulder and leg cuts of Corriedale lambs. Twenty-two sheep with average age of 18 months were used. Linear regressions were determined between the studied characteristics. The mean body mass, body condition score (BCS), and BMI were 49.09±7.8 kg, 2.69±0.81, and 10.66±0.99, respectively. The BMI was correlated with the BCS (r = 0.51) and internal fat (r = 0.81). Multiple linear equations, involving BMI and BCS, yielded correlation coefficients between 0.50 and 0.76, with significant values for all studied characteristics. The body mass index allows estimating the body energy reserves of Corriedale sheep.O objetivo deste trabalho foi identificar relações do índice de massa corporal (IMC) com as reservas energéticas corporais e a composição tecidual de cortes da paleta e do pernil de cordeiros Corriedale. Vinte e dois cordeiros com idade média de 18 meses foram utilizados. Regressões lineares foram determinadas entre as características estudadas. A massa corporal média, o escore de condição corporal (ECC) e o IMC foram 49,09±7,8 kg, 2,69±0,81 e 10,66±0,99, respectivamente. O IMC correlacionou-se ao ECC (r = 0,51) e à gordura interna total (r = 0,81). Equações lineares múltiplas que envolveram o IMC e o ECC forneceram coeficientes de correlação entre 0,50 e 0,76, com valores significativos para todas as características estudadas. O índice de massa corporal permite estimar as reservas de energia corporal de ovinos Corriedale
ESCAVAÇÃO DO SAMBAQUI JABOTICABEIRA V, MUNICÍPIO DE JAGUARUNA, SUL DO ESTADO DE SANTA CATARINA: DADOS E DISCUSSÕES
Este trabalho tem como finalidade apresentar os resultados obtidos através das escavações arqueológicas realizadas no sambaqui Jaboticabeira V, que está situado sob uma área de dunas holocênicas de baixa atividade recobertas pela formação vegetal jundu. O sítio Jaboticabeira V está situado no município de Jaguaruna, nas proximidades dos também sambaquis Jabuticabeira I e II, mas apresenta diferenças morfológicas consideráveis em relação aos sítios citados.
Investigando os impactos da COVID-19 no ensino remoto da computação: uma análise no nordeste do Brasil / Investigating COVID-19's impacts on remote computing teaching: an analysis in northeastern Brazil
A pandemia da Covid-19 trouxe grandes desafios para diversas áreas, como política, economia e educação. Os altos índices de contágios e mortes causados por essa doença, assim como os efeitos relacionados à saúde mental dos indivíduos, causaram impactos em toda a sociedade. Na educação, a crise afetou o ensino em todos os níveis. Alunos e professores têm vivenciado um cenário desafiador, devido à adaptação do ensino tradicional para o ensino remoto emergencial. Assim, este estudo teve como objetivo conhecer as limitações que um grupo específico de docentes enfrentou durante esse processo, investigando as principais dificuldades relacionadas às mudanças no trabalho docente e se isto afetou a saúde mental de cada um deles. Para isso, foi conduzido um questionário para coleta de dados, respondido por professores que atenderam a critérios específicos de inclusão, como: ser professor de Computação e áreas afins, lecionar no Ensino Superior, atuar no Nordeste do Brasil e estar ministrando aulas remotas durante o semestre suplementar excepcional, implementado por suas instituições de ensino. A região Nordeste foi escolhida devido às limitações de infraestrutura e investimento governamental, que podem ter sido agravadas com o surgimento da Covid-19. Os resultados apontaram desafios relacionados não apenas ao planejamento do trabalho remoto, mas também ao aumento da quantidade de trabalho e estresse vivenciados
- …