464 research outputs found

    Towards pore-scale simulation of combustion in porous media using a low-Mach hybrid lattice Boltzmann/finite difference solver

    Full text link
    A hybrid numerical model previously developed for combustion simulations is extended in this article to describe flame propagation and stabilization in porous media. The model, with a special focus on flame/wall interaction processes, is validated via corresponding benchmarks involving flame propagation in channels with both adiabatic and constant-temperature walls. Simulations with different channel widths show that the model can correctly capture the changes in flame shape and propagation speed as well as the dead zone and quenching limit, as found in channels with cold walls. The model is further assessed considering a pseudo 2-D porous burner involving an array of cylindrical obstacles at constant temperature, investigated in a companion experimental study. Furthermore, the model is used to simulate pore-scale flame dynamics in a randomly-generated 3-D porous media. Results are promising, opening the door for future simulations of flame propagation in realistic porous media

    Stellar Iron Abundances: non-LTE Effects

    Get PDF
    We report new statistical equilibrium calculations for Fe I and Fe II in the atmosphere of Late-Type stars. We used atomic models for Fe I and Fe II having respectively 256 and 190 levels, as well as 2117 and 3443 radiative transitions. Photoionization cross-sections are from the Iron Project. These atomic models were used to investigate non-LTE effects in iron abundances of Late-Type stars with different atmospheric parameters. We found that most Fe I lines in metal-poor stars are formed in conditions far from LTE. We derived metallicity corrections of about 0.3 dex with respect to LTE values, for the case of stars with [Fe/H] ~ -3.0. Fe II is found not to be affected by significant non-LTE effects. The main non-LTE effect invoked in the case of Fe I is overionization by ultraviolet radiation, thus classical ionization equilibrium is far to be satisfied. An important consequence is that surface gravities derived by LTE analysis are in error and should be corrected before final abundances corrections. This apparently solves the observed discrepancy between spectroscopic surface gravities derived by LTE analyses and those derived from Hipparcos parallaxes. A table of non-LTE [Fe/H] and log g values for a sample of metal-poor late-type stars is given.Comment: 22 pages, 9 figures, 1 table, ApJ style, accepte

    CONTRIBUTION TO THE STUDY OF In2S3 THIN FILMS PROPERTIES GROWN BY SPRAY PYROLYSIS

    Get PDF
    Polycrystalline In2S3 thin films were grown on glass substrates by means of chemical spray pyrolysis, using indium chloride (InCl3) and thiourea (CS(NH2)2) as precursors. The deposits were performed under air atmosphere with substrates maintained at temperatures varying from 300 to 400°C. The optical and structural properties of the films were studied as a function of the deposition time and the substrate temperature. X-ray diffraction has shown that the In2S3 material is the main phase present in these films and that the allotropic structure of this phase is affected by the substrate temperature and the deposition time. The optical transmittance of the In2S3 films varies in accordance with the substrate temperature. The average transmission in the visible region exceeds 70% and optical band gap of the films was found to vary from 2.47 to 2.53 eV

    Equation of state SAHA-S meets stellar evolution code CESAM2k

    Full text link
    We present an example of an interpolation code of the SAHA-S equation of state that has been adapted for use in the stellar evolution code CESAM2k. The aim is to provide the necessary data and numerical procedures for its implementation in a stellar code. A technical problem is the discrepancy between the sets of thermodynamic quantities provided by the SAHA-S equation of state and those necessary in the CESAM2k computations. Moreover, the independent variables in a practical equation of state (like SAHA-S) are temperature and density, whereas for modelling calculations the variables temperature and pressure are preferable. Specifically for the CESAM2k code, some additional quantities and their derivatives must be provided. To provide the bridge between the equation of state and stellar modelling, we prepare auxiliary tables of the quantities that are demanded in CESAM2k. Then we use cubic spline interpolation to provide both smoothness and a good approximation of the necessary derivatives. Using the B-form of spline representation provides us with an efficient algorithm for three-dimensional interpolation. The table of B-spline coefficients provided can be directly used during stellar model calculations together with the module of cubic spline interpolation. This implementation of the SAHA-S equation of state in the CESAM2k stellar structure and evolution code has been tested on a solar model evolved to the present. A comparison with other equations of state is briefly discussed. The choice of a regular net of mesh points for specific primary quantities in the SAHA-S equation of state, together with accurate and consistently smooth tabulated values, provides an effective algorithm of interpolation in modelling calculations. The proposed module of interpolation procedures can be easily adopted in other evolution codes.Comment: 8 pages, 5 figure

    OPTIMIZATION OF GROWTH OF TERNARY CuInS2 BY SPRAY PYROLYSIS FOR PHOTOVOLTAIC APPLICATION

    Get PDF
    CuInS2 ternary films is a promising absorber material for thin film solar cells. It has recently attracted considerable attention due to its high photovoltaic conversion efficiency, and the opportunity to be synthesized by low-cost techniques. In this work CuInS2 thin films have been deposited by chemical Spray pyrolysis onto glass substrate at ambient atmosphere without sulfurization. The effect of the [Cu]/[In] ration, substrate temperature and the time of spray, on the structural, chemical stoichiometry, topographical, and optical properties of CIS thin films were investigated. EDS result demonstrated that stoichiometric CuInS2 film can be adjusted [Cu]/[In] ration. Chalcopyrite structure of this film was confirmed by XRD analysis. The near stoichiometric CuInS2 film has the optical band gap Eg of 1.45eV

    PREPARATION AND PROPERTIES OF CZTS THIN FILM PREPARED BY SPRAY PYROLYSIS

    Get PDF
    In this work we have developed thin-film CZTS (Cu2ZnSnS4) by "spray pyrolysis" technique on preheated glass substrates from an aqueous solution containing ions of copper, zinc, tin and sulfur at different temperatures. Then we performed structural analysis of samples prepared by different characterization methods such as X-ray diffraction (RXD), Raman microscopy, and transmission electron microscopy (SEM). Experimental results have verified that the thin films deposited CZTS are relatively uniform on the substrates. Structural analysis by X-ray diffraction showed that the deposited films are Kestrite structure with a bias in the direction  with the appearance of a second phase the binary Cu2-xS, which is confirmed by the analysis Raman spectroscopy

    Effect of annealing on structural and optical properties of ZnO thin films prepared by Sol-Gel technique

    Get PDF
    Zinc oxide thin films were prepared by sol gel method and spin coating technique, using zinc acetate as precursor solution on glass substrate. The prepared films were annealed at three different temperatures to study the effect of annealing on the structural and optical properties of ZnO thin films. The deposited and annealed films were characterized by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy and scanning electron microscopy (SEM) coupled with microanalysis (EDX). The XRD pattern shows that ZnO films are polycrystalline in nature and crystallite size increases with the increase in annealing temperature. Optical transmittance measurements were taken using UV-Vis-NIR spectrophotometer and the calculated values of the direct band gap energy, Eg was between 3, 28 and 3, 42 eV

    Abundance Analysis of Planetary Host Stars I. Differential Iron Abundances

    Full text link
    We present atmospheric parameters and iron abundances derived from high-resolution spectra for three samples of dwarf stars: stars which are known to host close-in giant planets (CGP), stars for which radial velocity data exclude the presence of a close-in giant planetary companion (no-CGP), as well as a random sample of dwarfs with a spectral type and magnitude distribution similar to that of the planetary host stars (control). All stars have been observed with the same instrument and have been analyzed using the same model atmospheres, atomic data and equivalent width modeling program. Abundances have been derived differentially to the Sun, using a solar spectrum obtained with Callisto as the reflector with the same instrumentation. We find that the iron abundances of CGP dwarfs are on average by 0.22 dex greater than that of no-CGP dwarfs. The iron abundance distributions of both the CGP and no-CGP dwarfs are different than that of the control dwarfs, while the combined iron abundances have a distribution which is very similar to that of the control dwarfs. All four samples (CGP, no-CGP, combined, control) have different effective temperature distributions. We show that metal enrichment occurs only for CGP dwarfs with temperatures just below solar and approximately 300 K higher than solar, whereas the abundance difference is insignificant at Teff around 6000 K.Comment: 52 pages (aastex 11pt, preprint style), including 17 figures and 13 tables; accepted for publication in AJ (scheduled for the October 2003 issue

    Abundances in Stars from the Red Giant Branch Tip to Near the Main Sequence Turn Off in M71: III. Abundance Ratios

    Get PDF
    We present abundance ratios for 23 elements with respect to Fe in a sample of stars with a wide range in luminosity, from luminous giants to stars near the turnoff, in the globular cluster M71. The analyzed spectra, obtained with HIRES at the Keck Observatory, are of high dispersion (R=35,000). We find that the neutron capture, the iron peak and the alpha-element abundance ratios show no trend with Teff, and low scatter around the mean between the top of the RGB and near the main sequence turnoff. The alpha-elements Mg, Ca, Si and Ti are overabundant relative to Fe. The anti-correlation between O and Na abundances, observed in other metal poor globular clusters, is detected in our sample and extends to the main sequence. A statistically significant correlation between Al and Na abundances is observed among the M71 stars in our sample, extending to Mv = +1.8, fainter than the luminosity of the RGB bump in M5. Lithium is varying, as expected, and Zr may be varying from star to star as well. M71 appears to have abundance ratios very similar to M5 whose bright giants were studied by Ivans et al. (2001), but seems to have a smaller amplitude of star-to-star variations at a given luminosity, as might be expected from its higher metallicity. The results of our abundance analysis of 25 stars in M71 provide sufficient evidence of abundance variations at unexpectedly low luminosities to rule out the mixing scenario. Either alone or, even more powerfully, combined with other recent studies of C and N abundances in M71 stars, the existence of such abundance variations cannot be reproduced within the context of our current understanding of stellar evolution.Comment: AJ, in press (June 2002), 18 figure

    Abundances in Stars from the Red Giant Branch Tip to the Near Main Sequence in M71: II. Iron Abundance

    Full text link
    We present [Ffe/H] abundance results that involve a sample of stars with a wide range in luminosity from luminous giants to stars near the turnoff in a globular cluster. Our sample of 25 stars in M71 includes 10 giant stars more luminous than the RHB, 3 horizontal branch stars, 9 giant stars less luminous than the RHB, and 3 stars near the turnoff. We analyzed both Fe I and Fe II lines in high dispersion spectra observed with HIRES at the W. M. Keck Observatory. We find that the [Fe/H] abundances from both Fe I and Fe II lines agree with each other and with earlier determinations. Also the [Fe/H] obtained from Fe I and Fe II lines is constant within the rather small uncertainties for this group of stars over the full range in Teff and luminosity, suggesting that NLTE effects are negligible in our iron abundance determination. In this globular cluster, there is no difference among the mean [Fe/H] of giant stars located at or above the RHB, RHB stars, giant stars located below the RHB and stars near the turnoff.Comment: Minor changes to conform to version accepted for publication, with several new figures (Paper 2 of a pair
    corecore