549 research outputs found
Vortex Motion Noise in Micrometre-Sized Thin Films of the Amorphous Nb0.7Ge0.3 Weak-Pinning Superconductor
We report high-resolution measurements of voltage (V) noise in the mixed
state of micrometre-sized thin films of amorphous Nb0.7Ge0.3, which is a good
representative of weak-pinning superconductors. There is a remarkable
difference between the noise below and above the irreversibility field Birr.
Below Birr, in the presence of measurable pinning, the noise at small applied
currents resembles shot noise, and in the regime of flux flow at larger
currents decreases with increasing voltage due to a progressive ordering of the
vortex motion. At magnetic fields B between Birr and the upper critical field
Bc2 flux flow is present already at vanishingly small currents. In this regime
the noise scales with (1-B/Bc2)^2 V^2 and has a frequency (f) spectrum of 1/f
type. We interpret this noise in terms of the properties of strongly driven
depinned vortex systems at high vortex density.Comment: 8 pages, 5 figures, version accepted for publication in PR
Melting of two dimensional solids on disordered substrate
We study 2D solids with weak substrate disorder, using Coulomb gas
renormalisation. The melting transition is found to be replaced by a sharp
crossover between a high liquid with thermally induced dislocations, and a
low glassy regime with disorder induced dislocations at scales larger than
which we compute (, the Larkin and
translational correlation lengths). We discuss experimental consequences,
reminiscent of melting, such as size effects in vortex flow and AC response in
superconducting films.Comment: 4 pages, uses RevTeX, Amssymb, multicol,eps
Mode locking of vortex matter driven through mesoscopic channels
We investigated the driven dynamics of vortices confined to mesoscopic flow
channels by means of a dc-rf interference technique. The observed mode-locking
steps in the -curves provide detailed information on how the number of rows
and lattice structure in the channel change with magnetic field. Minima in flow
stress occur when an integer number of rows is moving coherently, while maxima
appear when incoherent motion of mixed and row configurations is
predominant. Simulations show that the enhanced pinning at mismatch originates
from quasi-static fault zones with misoriented edge dislocations induced by
disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for
publication in Phys. Rev. Let
How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation
This paper addresses two questions in the context of neuronal networks
dynamics, using methods from dynamical systems theory and statistical physics:
(i) How to characterize the statistical properties of sequences of action
potentials ("spike trains") produced by neuronal networks ? and; (ii) what are
the effects of synaptic plasticity on these statistics ? We introduce a
framework in which spike trains are associated to a coding of membrane
potential trajectories, and actually, constitute a symbolic coding in important
explicit examples (the so-called gIF models). On this basis, we use the
thermodynamic formalism from ergodic theory to show how Gibbs distributions are
natural probability measures to describe the statistics of spike trains, given
the empirical averages of prescribed quantities. As a second result, we show
that Gibbs distributions naturally arise when considering "slow" synaptic
plasticity rules where the characteristic time for synapse adaptation is quite
longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure
Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films
We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using
spatially resolved heavy ion irradiation. Structures consisting of a periodic
array of strong and weak pinning channels were created with the help of metal
masks. The channels formed an angle of +/-45 Deg with respect to the symmetry
axis of the photolithographically patterned structures. Investigations of the
anisotropic transport properties of these structures were performed. We found
striking resemblance to guided vortex motion as it was observed in YBCO single
crystals containing an array of unidirected twin boundaries. The use of two
additional test bridges allowed to determine in parallel the resistivities of
the irradiated and unirradiated parts as well as the respective current-voltage
characteristics. These measurements provided the input parameters for a
numerical simulation of the potential distribution of the Hall patterning. In
contrast to the unidirected twin boundaries in our experiment both strong and
weak pinning regions are spatially extended. The interfaces between
unirradiated and irradiated regions therefore form a Bose-glass contact. The
experimentally observed magnetic field dependence of the transverse voltage
vanishes faster than expected from the numerical simulation and we interpret
this as a hydrodynamical interaction between a Bose-glass phase and a vortex
liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR
Clinical significance of VEGF-A, -C and -D expression in esophageal malignancies
Vascular endothelial growth factors ( VEGF)- A, - C and - D are members of the proangiogenic VEGF family of glycoproteins. VEGF-A is known to be the most important angiogenic factor under physiological and pathological conditions, while VEGF-C and VEGF-D are implicated in the development and sprouting of lymphatic vessels, so called lymphangiogenesis. Local tumor progression, lymph node metastases and hematogenous tumor spread are important prognostic factors for esophageal carcinoma ( EC), one of the most lethal malignancies throughout the world. We found solid evidence in the literature that VEGF expression contributes to tumor angiogenesis, tumor progression and lymph node metastasis in esophageal squamous cell carcinoma ( SCC), and many authors could show a prognostic value for VEGF-assessment. In adenocarcinoma (AC) of the esophagus angiogenic properties are acquired in early stages, particularly in precancerous lesions like Barrett's dysplasia. However, VEGF expression fails to give prognostic information in AC of the esophagus. VEGF-C and VEGF-D were detected in SCC and dysplastic lesions, but not in normal mucosa of the esophagus. VEGF-C expression might be associated with lymphatic tumor invasion, lymph node metastases and advanced disease in esophageal SCC and AC. Therapeutic interference with VEGF signaling may prove to be a promising way of anti-angiogenic co-treatment in esophageal carcinoma. However, concrete clinical data are still pending
Maternal psychological distress in primary care and association with child behavioural outcomes at age three
Observational studies indicate children whose mothers have poor mental health are at increased risk of socio-emotional behavioural difficulties, but it is unknown whether these outcomes vary by the mothers’ mental health recognition and treatment status. To examine this question, we analysed linked longitudinal primary care and research data from 1078 women enrolled in the Born in Bradford cohort. A latent class analysis of treatment status and self-reported distress broadly categorised women as (a) not having a common mental disorder (CMD) that persisted through pregnancy and the first 2 years after delivery (N = 756, 70.1 %), (b) treated for CMD (N = 67, 6.2 %), or (c) untreated (N = 255, 23.7 %). Compared to children of mothers without CMD, 3-year-old children with mothers classified as having untreated CMD had higher standardised factor scores on the Strengths and Difficulties Questionnaire (d = 0.32), as did children with mothers classified as having treated CMD (d = 0.27). Results were only slightly attenuated in adjusted analyses. Children of mothers with CMD may be at risk for socio-emotional and behavioural difficulties. The development of effective treatments for CMD needs to be balanced by greater attempts to identify and treat women. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00787-015-0777-2) contains supplementary material, which is available to authorized users
Juxta-articular myxoma of the knee in a 5-year-old boy: a case report and review of the literature (2009: 12b)
Juxta-articular myxoma (JAM) is a relatively rare variant of myxoma that occurs in the vicinity of large joints. It is composed of fibroblast-like cells that produce an excessive amount of glycosaminoglycans rich in hyaluronic acid. The peak incidence is between the 3rd and 5th decades of life. In this report we describe an extremely rare case of JAM in the knee of a 5-year-old child. The clinical presentation, radiological features and histopathologic findings are described, and the relevant literature is reviewed
Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity
BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream
Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale
Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp.
Author Summary
Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc
- …