6 research outputs found

    Imaging Photoelectron Transmission through Self-Assembled Monolayers: The Work-Function of Alkanethiols Coated Gold

    Get PDF
    In this paper, we present a new approach for studying the electronic properties of self-assembled monolayers and their interaction with a conductive substrate, the low-energy photoelectron imaging spectroscopy (LEPIS). LEPIS relies on imaging of photoelectrons ejected from a conductive substrate and subsequently transmitted through organic monolayers. Using this method, we measure the relative work-function of alkanethiols of different length on gold substrate, and we are able to follow the changes occurring when the surface coverage is varied. We also computed the work-function of model alkanethiols using a plane-wave density functional theory approach, in order to demonstrate the correlation between changes in the work-function with the monolayer organization and density

    Kinetics of NH3 Desorption and Diffusion on Pt: Implications for the Ostwald Process.

    Get PDF
    We report accurate time-resolved measurements of NH3 desorption from Pt(111) and Pt(332) and use these results to determine elementary rate constants for desorption from steps, from (111) terrace sites and for diffusion on (111) terraces. Modeling the extracted rate constants with transition state theory, we find that conventional models for partition functions, which rely on uncoupled degrees of freedom (DOFs), are not able to reproduce the experimental observations. The results can be reproduced using a more sophisticated partition function, which couples DOFs that are most sensitive to NH3 translation parallel to the surface; this approach yields accurate values for the NH3 binding energy to Pt(111) (1.13 ± 0.02 eV) and the diffusion barrier (0.71 ± 0.04 eV). In addition, we determine NH3's binding energy preference for steps over terraces on Pt (0.23 ± 0.03 eV). The ratio of the diffusion barrier to desorption energy is 0.65, in violation of the so-called 12% rule. Using our derived diffusion/desorption rates, we explain why established rate models of the Ostwald process incorrectly predict low selectivity and yields of NO under typical reactor operating conditions. Our results suggest that mean-field kinetics models have limited applicability for modeling the Ostwald process.D.B. and M.S. thank the BENCh graduate school, funded by the DFG (389479699/GRK2455). I.R. gratefully acknowledges the support by Israel Science Foundation, ISF (Grant No. 2187/19), and by the Open University of Israel Research Authority (Grant No. 31044). O.G. acknowledges financial support by the Spanish Ministerio de Ciencia e Innovación (Grant No. PID2019-107396GB-I00/AEI/10.13039/501100011033). T.N.K., G.S., M.S., and J.F. acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 833404)

    Two-Photon Dissociation Study of CS 2

    No full text

    Driving photochemistry by clustering: The ICl-Xe case

    No full text
    We present slice imaging data demonstrating the influence of clustering on the photodissociation dynamics of a diatomic molecule: iodine monochloride (ICl) was dissociated at 235 nm in He and Xe seed gasses, probing both Cl and I photofragment energy and angular distributions. We observe that the kinetic energy releases of both Cl and I fragments change from He to Xe seeding. For Cl fragments, the seeding in Xe increases the kinetic energy release of some Cl fragments with a narrow kinetic energy distribution, and leads to some fragments with rather broad statistical distribution falling off exponentially from near-zero energies up to about 2.5 eV. Iodine fragment distribution changes even more dramatically from He to Xe seeding: sharp features essentially disappear and a broad distribution arises reaching to about 2.5 eV. Both these observations are rationalized by a simple qualitative cluster model assuming ICl dissociation inside larger xenon clusters and on surface of smaller Xe species. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758317

    Steric Hindrance of NH<sub>3</sub> Diffusion on Pt(111) by Co-Adsorbed O‑Atoms

    No full text
    A detailed velocity-resolved kinetics study of NH3 thermal desorption rates from p(2 × 2) O/Pt(111) is presented. We find a large reduction in the NH3 desorption rate due to adsorption of O-atoms on Pt(111). A physical model describing the interactions between adsorbed NH3 and O-atoms explains these observations. By fitting the model to the derived desorption rate constants, we find an NH3 stabilization on p(2 × 2) O/Pt(111) of 0.147–0.014+0.023 eV compared to Pt(111) and a rotational barrier of 0.084–0.022+0.049 eV, which is not present on Pt(111). The model also quantitatively predicts the steric hindrance of NH3 diffusion on Pt(111) due to co-adsorbed O-atoms. The derived diffusion barrier of NH3 on p(2 × 2) O/Pt(111) is 1.10–0.13+0.22 eV, which is 0.39–0.14+0.22 eV higher than that on pristine Pt(111). We find that Perdew Burke Ernzerhof (PBE) and revised Perdew Burke Ernzerhof (RPBE) exchange–correlation functionals are unable to reproduce the experimentally observed NH3–O adsorbate–adsorbate interactions and NH3 binding energies at Pt(111) and p(2 × 2) O/Pt(111), which indicates the importance of dispersion interactions for both systems
    corecore