628 research outputs found

    Revisiting the anomalous rf field penetration into a warm plasma

    Full text link
    Radio frequency waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, nonlocal theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma.Comment: 44 pages, invited paper at "Nonlocal, Collisionless Phenomena in Plasma" worksho

    Lifetime Measurement of the 8s Level in Francium

    Full text link
    We measure the lifetime of the 8s level on a magneto-optically trapped sample of ^{210}Fr atoms with time-correlated single-photon counting. The 7P_{1/2} state serves as the resonant intermediate level for two-photon excitation of the 8s level completed with a 1300 nm laser. Analysis of the fluorescence decay through the the 7P_{3/2} level gives 53.30 +- 0.44 ns for the 8s level lifetime.Comment: 4 pages, 4 figure

    A new model for the structure of the DACs and SACs regions in the Oe and Be stellar atmospheres

    Full text link
    In this paper we present a new mathematical model for the density regions where a specific spectral line and its SACs/DACs are created in the Oe and Be stellar atmospheres. In the calculations of final spectral line function we consider that the main reasons of the line broadening are the rotation of the density regions creating the spectral line and its DACs/SACs, as well as the random motions of the ions. This line function is able to reproduce the spectral feature and it enables us to calculate some important physical parameters, such as the rotational, the radial and the random velocities, the Full Width at Half Maximum, the Gaussian deviation, the optical depth, the column density and the absorbed or emitted energy. Additionally, we can calculate the percentage of the contribution of the rotational velocity and the ions' random motions of the DACs/SACs regions to the line broadening. Finally, we present two tests and three short applications of the proposed model.Comment: 9 pages, 5 figures, accepted for publication in PAS

    Optimizing the fast Rydberg quantum gate

    Get PDF
    The fast phase gate scheme, in which the qubits are atoms confined in sites of an optical lattice, and gate operations are mediated by excitation of Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000). A potential source of decoherence in this system derives from motional heating, which occurs if the ground and Rydberg states of the atom move in different optical lattice potentials. We propose to minimize this effect by choosing the lattice photon frequency \omega so that the ground and Rydberg states have the same frequency-dependent polarizability \alpha(omega). The results are presented for the case of Rb.Comment: 5 pages, submitted to PR

    Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling

    Get PDF
    Magnetosomes are nano-sized magnetic nanoparticles with exquisite properties that can be used in a wide range of healthcare and biotechnological applications. They are biosynthesised by magnetotactic bacteria (MTB), such as Magnetospirillum gryphiswaldense MSR-1 (Mgryph). However, magnetosome bioprocessing yields low quantities compared to chemical synthesis of magnetic nanoparticles. Therefore, an understanding of the intracellular metabolites and metabolic networks related to Mgryph growth and magnetosome formation are vital to unlock the potential of this organism to develop improved bioprocesses. In this work, we investigated the metabolism of Mgryph using untargeted metabolomics. Liquid chromatography-mass spectrometry (LC-MS) was performed to profile spent medium samples of Mgryph cells grown under O2-limited (n ÂĽ 6) and O2-rich conditions (n = 6) corresponding to magnetosome- and non-magnetosome producing cells, respectively. Multivariate, univariate and pathway enrichment analyses were conducted to identify significantly altered metabolites and pathways. Rigorous metabolite identification was carried out using authentic standards, the Mgryph-specific metabolite database and MS/MS mzCloud database. PCA and OPLS-DA showed clear separation and clustering of sample groups with cross-validation values of R2X ÂĽ 0.76, R2Y ÂĽ 0.99 and Q2 ÂĽ 0.98 in OPLS-DA. As a result, 50 metabolites linked to 45 metabolic pathways were found to be significantly altered in the tested conditions, including: glycine, serine and threonine; butanoate; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis and; pyruvate and citric acid cycle (TCA) metabolisms. Our findings demonstrate the potential of LC-MS to characterise key metabolites in Mgryph and will contribute to further understanding the metabolic mechanisms that affect Mgryph growth and magnetosome formation

    Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium

    Full text link
    Electric-dipole matrix elements for ns-n'p, nd-n'p, and 6d-4f transitions in Rb are calculated using a relativistic all-order method. A third-order calculation is also carried out for these matrix elements to evaluate the importance of the high-order many-body perturbation theory contributions. The all-order matrix elements are used to evaluate lifetimes of ns and np levels with n=6, 7, 8 and nd levels with n=4, 5, 6 for comparison with experiment and to provide benchmark values for these lifetimes. The dynamic polarizabilities are calculated for ns states of rubidium. The resulting lifetime and polarizability values are compared with available theory and experiment.Comment: 8 pages, 2 figure

    Sub-Doppler spectroscopy of Rb atoms in a sub-micron vapor cell in the presence of a magnetic field

    Full text link
    We report the first use of an extremely thin vapor cell (thickness ~ 400 nm) to study the magnetic-field dependence of laser-induced-fluorescence excitation spectra of alkali atoms. This thin cell allows for sub-Doppler resolution without the complexity of atomic beam or laser cooling techniques. This technique is used to study the laser-induced-fluorescence excitation spectra of Rb in a 50 G magnetic field. At this field strength the electronic angular momentum J and nuclear angular momentum I are only partially decoupled. As a result of the mixing of wavefunctions of different hyperfine states, we observe a nonlinear Zeeman effect for each sublevel, a substantial modification of the transition probabilities between different magnetic sublevels, and the appearance of transitions that are strictly forbidden in the absence of the magnetic field. For the case of right- and left- handed circularly polarized laser excitation, the fluorescence spectra differs qualitatively. Well pronounced magnetic field induced circular dichroism is observed. These observations are explained with a standard approach that describes the partial decoupling of I and J states

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S→43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S→33P→n3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S→21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.
    • …
    corecore