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Abstract

In low-pressure discharges, where the electron mean free path is larger or comparable with the

discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy

distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate

kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity

operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of

simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study

a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly

collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity

operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This

system was applied to the calculation of collisionless heating in capacitively and inductively coupled

plasmas. In particular, the importance of accounting for the nonuniform plasma density profile

for computing the current density profile and the EEDF is demonstrated. The enhancement of

collisionless heating due to the bounce resonance between the electron motion in the potential well

and the external rf electric field is investigated. It is shown that a nonlinear and self-consistent

treatment is necessary for the correct description of collisionless heating.
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I. INTRODUCTION

Two basic phenomena: Landau damping and anomalous skin effect attract much interest

in the plasma physics community. Both phenomena represent striking examples when the

collisionless electron dynamics is considerably different from the collisional electron dynam-

ics. The collisional electron dynamics is well described by Ohm’s law - the electron current is

proportional to the local electric field. If the electron mean free path is larger than the char-

acteristic inhomogeneity scale of the electric field, an electron traverses significant distance

between collisions and samples” different values of electric field along its way. As a result,

the electron current is determined not by the local rf electric field, but rather is a function

of the entire profile of the rf electric field (anomalous skin effect). Also for inhomogeneous

electric fields another mechanism of heating or power dissipation, strikingly different from

collisional one, is possible - the collisionless heating, that is determined by the wave-particle

resonance and in most cases does not depend on the collision frequency (Landau damping).

The anomalous skin effect [1, 2] and Landau damping [3] were theoretically described in

the late 40s. Further investigations were stimulated by fusion studies in late 60s and early

70s, when a large number of theoretical and experimental papers elaborated on the details of

both effects for plasmas (e.g., see reviews [4–6]). Recent resurgence of interest to the subject

was invoked by applications of low-pressure discharges for plasma processing and lighting

[7]. To increase fluxes of ions and radicals on a substrate, the semiconductor industry tends

to use low-pressure gas discharges, typically with gas pressure of few milliTorrs. For these

low pressures, it is easier to maintain plasma uniformity. Under these conditions the electron

mean free path is large compared with the characteristic inhomogeneity scale of the electric

field and the electron dynamics is collisionless. If one needs to understand power dissipation

in such plasmas, the Landau damping and the anomalous skin effect have to be revisited for

the conditions of low-pressure discharges.

Two major recent breakthroughs stimulated considerable advancement in the subject.

Significant progress in refining the probe diagnostics of rf discharges has been achieved in

the past decade [8]. That enabled experimentalists to measure detailed profiles of rf electric

and magnetic fields, as well as the plasma potential and the electron energy distribution

function (EEDF).

Significant progress has been also achieved in the simulation of rf discharges. The capa-
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bilities of modern computers allow to perform two- and three-dimensional simulations of gas

discharges. Typically, they are particle-in-cell simulations with self- consistent electric and

magnetic fields obtained from Maxwell’s equations akin Ref. [9].

With experimental data and simulation results at hand, researchers may take on pro-

gressively more complicated situations. Research is advancing from one-dimensional, linear,

non-self-consistent studies of uniform plasmas towards two- or three-dimensional, nonlinear

kinetic self-consistent studies of nonuniform plasmas. This paper represents a compendium

of recent results on the nonlinear kinetic and plasma self-organization.

II. NONLINEAR LANDAU DAMPING

In the rf electric field E, an electron oscillates back and forth with the rf velocity ṽ,

according to

m
dṽ

dt
= −eE, (1)

where m and e are the electron mass and charge, respectively. There is no heating on

a long time scale in a steady-state operation. However, there is initial rf heating during

switching on of the rf power [11]. The time-averaged electron kinetic energy increases due

to oscillations because the kinetic energy is a nonlinear function of the velocity〈m
2

(v + ṽ)2
〉

=
mv2

2
+

〈
mṽ2

2

〉
>
mv2

2
.

There is collisionless heating also for the case of the localized rf field, when plasma electrons

increase their kinetic energy on average due to resonant electron - wave interaction on the

expenses of the rf wave energy and dissipate then the acquired energy in the bulk of the

plasma. Inhomogeneity of the electric field is a key condition for collisionless heating [12].

This scenario may well describe the collisionless heating in rf discharges when the plasma

size is much larger than the width of the wave penetration into the plasma. In the opposite

case, the finite dimensions of the discharge have to be accounted for.

The collisionless electron heating by rf waves can be described by making use of the

quasilinear theory [10]. In this theory the rf electric field is decomposed into a series of plane

waves and the total heating is calculated as a sum of the electron heating by individual plane

waves. Therefore, first it is important to thoroughly understand how collisionless heating
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occurs by a single plane wave. Here, we assume that the external electric field penetrates into

a plasma and the wave amplitude is constant in time - continues operation of the discharge.

First, we analyze the electron heating in a non-self-consistent longitudinal rf wave with the

rf electric field given by E = E0 cos(kx−ωt+φ) in an infinite plasma. The electron oscillation

velocity of an electron moving with velocity vx calculated in the linear approximation (vx >>

ṽx) is given by

ṽx = −eE0 sin(kx− ωt+ φ)

m(ω − kvx)
. (2)

In the linear approximation vx = vx0 is determined by the initial electron velocity on the

right hand side of Eq. (2). Equation (2) has a singularity if the electron velocity equals the

wave phase velocity vx0 = ω/k. To overtake the singularity problem, the further analysis

of the resonant electrons has to account for the nonlinear effect: breaking the resonance

condition ω = kvx for the electrons moving with initial velocity vx0 due to the oscillatory

velocity vx = vx0 + ṽx.

The nonlinear analysis is readily done in the frame of the wave. In this frame, electrons

move in the electrostatic potential ϕ(x) = −eΦ0 cos kx, where Φ0 = E0/k. The evolution of

the electron velocity is governed by the Hamiltonian

H(vx, x) =
m

2

(
vx − ω

k

)2

− eΦ0 cos kx. (3)

Electrons with total energy H < eΦ0 are trapped within the wave, as shown in Fig.1(the up-

per plot is drawn in dimensionless units). They perform nonlinear bouncing in the potential

well with velocity ṽ of order ∆u = (eΦ0/m)1/2. The linear theory of collisionless damping

breaks down for times longer than the bounce time τr ≡ 1/k∆u = (m/eΦ0k
2)

1/2
of resonant

electrons trapped in the potential well. In a steady state, the electron oscillatory velocity ṽ

lags in phase behind the rf electric field by π/2 and the heating, being proportional to the

time average 〈ṽE〉, vanishes exactly. To break the strict correlation between ṽ and E, some

additional dynamic processes have to be accounted for. There can be, for example, collisions

with walls or atoms. Collisions with walls may result in a dynamic chaos due to electron

trajectory instability. The electron heating via dynamic chaos is described in the books [13]

and [14]. Dynamic chaos requires special conditions on the amplitude and frequency of the

wave. Here, we consider the opposite case where the dynamic chaos does not develop and

collisions with atoms are responsible for the electron heating. To describe the collisionless

heating we add rare collisions with gas atoms with frequency ν << ω. From simulations
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and experimental data we know that the resulting collisionless heating does not depend on

the electron collision frequency. However, as we discussed above, in the exact limit ν = 0

the collisionless heating vanishes. That begs the questions: (i) how is it possible, and (ii)

whether there exist conditions where collisionless heating does depend on the collision fre-

quency. To answer these questions we analyze the electron dynamics in the wave accounting

for rare collisions.

Once again, for a single wave there is no heating without collisions because electrons

acquire the energy from the wave during one half of the wave period and then return it

during the other half. It sounds paradoxical, but it is necessary to account for rare collisions

ν << ω to obtain net collisionless electron heating. In a partially ionized plasma, electrons

collide mainly with neutral atoms. The differential cross section of electron-atom scattering

is close to isotropic in the range of electron energies up to about 30 eV [15, 16]. This

means that during one collision the electron velocity rotates by a large angle and vx changes

considerably. As a result, electrons leave the resonance region
∣∣vx − ω

k

∣∣ ∼ ∆u during one

collision. This case is very different from the case of fully ionized plasmas where Coulomb

collisions scattering dominates . In Coulomb collisions, the small angle scattering contributes

most to the cross section. Therefore, for the case of fully ionized plasmas, electrons slowly

diffuse out of the resonance region during many collisions , in contrast to the case of partially

ionized plasmas, as it schematically shown in Fig.2.

The electron dynamics is a combination of bouncing in or near a potential well, then

scattering out of the resonance region during a time of the order of the collision time 1/ν,

after which electrons experience many “fruitless” collisions during a time much longer than

1/ν until they accidently return back to the resonance region and so forth. Because of

the relative simplicity of this collision process, it has been possible to solve analytically

the Vlasov equation retaining both the nonlinear electron dynamics in the potential well

and collisions accordingly, and to obtain the rate of collisionless electron heating [17]. The

qualitative discussion of such a solution is given below.

Electron collisions with atoms are a random process. In between collisions electrons gain

or loose energy from the wave as shown in Fig. 2. As a result of the combined action of

many collisions and many interactions with the wave, electrons experience a diffusion in the

energy space on time scales longer than the collision time and the wave period. The diffusion

coefficient in energy space D(ε) describes the formation of the electron energy distribution
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function f0(ε) (EEDF) and the collisionless heating. Indeed, when electrons diffuse in energy

space, the average electron energy increases which corresponds to heating. Therefore, for

the full description of the collisionless heating knowledge of D(ε) is sufficient.

The diffusion coefficient in energy space D(ε) is the product of the squared energy change

∆ε per step and the frequency of this step ν, averaged over an electron ensemble with a

given energy ε. In the linear approximation ∆ε = mvxṽ, where ṽ is given by Eq. (2) and

the diffusion coefficient in energy space is

D(ε) = ν
〈
(mṽ·v)2

〉
, (4)

where the angular brackets denote averaging over the electron ensemble with a given energy

ε.

Under typical discharge conditions, the elastic collision frequency is large compared to

the inelastic collision frequency. Therefore, an electron experiences a lot of collisions prior to

losing energy due to ionization or excitation. Elastic collisions scatter the electron velocity

on a large pitch angle and make the electron energy distribution function isotropic. This

means that in Eq. (4) the averaging has to be performed over all velocity directions.

Substituting ṽx from Eq. (2) into Eq. (4) gives

D(ε) =
1

2

∫
dvx
2v

ν (eE0)
2 v2

x

(ω − vxk)2
. (5)

Here, ε = mv2/2,
∫
dvx/2v =

∫
d cosαdβ/4π denotes averaging over velocity directions, and

1/2 accounts for averaging over the phase of the wave. The integral in Eq. (5) diverges at

the resonance ω = vxk; therefore, a more accurate description is necessary in the resonance

region. The reason for divergence is the long time 1/(ω − vxk) during which the electron

stays in resonance with the electric field. There are two physical mechanisms which limit

this time and destroy the resonance: One is collisions; if ν ∼ (ω − vxk), an electron leaves

the resonance region due to the collision and the amplitude of the velocity variation in Eq.

(2) diminishes. The collisions are easy to account for by introducing an additional friction

force into the electron motion equation (1). The resulting calculation requires the following

substitution in Eq. (5)
1

(ω − vxk)2
→ 1

(ω − vxk)2 + ν2
. (6)

The other mechanism is nonlinear effects of the electron motion in the potential well. The

linear estimate for ṽx in Eq. (2) breaks down if 1/(ω − vxk) > τr, i.e. for times longer than
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the bounce time of the trapped resonance electrons τr. Then the velocity variation ṽx is

limited by ∆u = eE0/mτr. Taking into account the nonlinear effects yields cumbersome

calculations. However, the result is qualitatively similar to Eq. (6) with ν been replaced by

τ−1
r . As a result of regularization of the resonance, Eq. (5) modifies to

D(ε) =
1

2

∫ v

−v

dvx
2v

(eE0)2 v2
x

ν

(ω − vxk)2 + ν2 + τ−2
r

. (7)

In the limit ντr >> 1, the last factor on the right hand side of Eq. (7) can be simplified to

ν

(ω − vxk)2 + ν2
→ πδ(ω − vxk), (8)

where δ is the Dirac delta-function [10]. Indeed, the maximum of the resonance function in

Eq. (8) is ν−1, whereas the width of the function is proportional to ν. The integral does not

depend on ν. In this limit, D(ε) is identical to the result of the quasilinear theory D = Dql

and can be written as

Dql =
π

4

(eE0)2

vk

(ω
k

)2

Θ
(
v − ω

k

)
, (9)

where Θ is the Heaviside function. Electrons with velocity small compared to the wave phase

velocity do not participate in the collisionless heating. Note that the diffusion coefficient

is of the order of the square of the energy step (eΦ0)2 multiplied by the frequency ω and

does not contain any dependence on the collision frequency. In reality, diffusion in energy

cannot occur without collisions, but because the width of the wave-particle resonance is

proportional to ν, the collision frequency disappears after integration of Eq. (7) in the limit

ντr >> 1.

The role of the collision frequency is recovered by nonlinear analysis. In the opposite

limit ντr << 1, the last factor in Eq. (7) can be simplified to

ν

(ω − vxk)2 + τ−2
r

→ πντrδ(ω − vxk). (10)

Indeed, the maximum of the resonance function in Eq. (10) is ντ 2
r while the width of the

function is proportional to τ−1
r , see Fig. 3. The integral diminishes in ντ 2

r · τ−1
r = ντ times

compared to the previous case. As a result the diffusion coefficient in energy space is ντ

times smaller than quasilinear estimate in Eq. (9), D = ντDql.

The exact analytical integration of the Vlasov equation accounting for nonlinear electron

dynamics in a potential well and for collisions yields [17]

D(ε) ∼= DqlΠ(ντr). (11)
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The function Π(ντr) is given in Ref. [17] and plotted in Fig. 4. Surprisingly, this complicated

function can be approximated within an error of less than 5% by tanh (2ντr). We can then

deduce that the diffusion coefficient in energy space is related to the quasilinear result by

D(ε) ∼= Dql ∗ tanh(2ντr). (12)

The above theory can be applied to the calculation of collisionless heating in a plasma.

In the traditional theory collisionless heating is constant when the collision frequency tends

to zero. In contrast to this, nonlinear effects cause the collisionless dissipation to tend to

zero as ν approaches zero and to actually vanish in the limit ν = 0. The formula derived

above gives the nonlinear wave damping for any value of the collision frequency. In the limit

ντr >> 1, tanh(ντr) → 1 and the obtained result coincides with the quasilinear theory. In

the opposite case ντr << 1, tanh(ντr) → 0, and collisionless heating and corresponding

wave damping vanishes, in accordance with the O’Neil theory [18]. Therefore, the result is

a natural generalization of both theories, and gives the collisionless heating for any value of

the collision frequency.

As can be seen from Fig. 4, the main contribution to heating at ντr >> 1 is due to

electrons not trapped in the potential well of the wave. For ντr<< 1, Π(ντr) ∼= 2ντr and

collisionless heating is proportional to the collision frequency, similar to the result of Ref.

[19]. Note that in contrast to Ref. [19], where only the limit of rare collisions was considered,

Eq. (12) is valid for arbitrary values of ντr. At small ντr the main contribution to the power

dissipation is due to trapped-in-the-wave electrons; the contribution of untrapped electrons

is only about 25% compared with that of trapped electrons. Note, that the obtained result

is also very different from that of [19], where the nonlinear Landau damping with account

for Coulomb collisions was explored. The main contribution to wave damping in that case is

due to the narrow boundary layers around the separatrixes between trapped and untrapped

electrons, see Fig. 1.

So far, we have considered electron heating by a monochromatic longitudinal wave. The

theory can be applied to the calculation of collisionless heating in any bounded plasma for

an arbitrary electric field. In many rf discharges, the electron plasma frequency is large

compared to the discharge frequency. Therefore, the applied external rf electric field is

screened near antennas or electrodes. An electron after passing the region of the rf electric

field acquires a velocity kick, which consequently lead to electron heating. In the next section
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we consider collisionless heating with prescribed velocity kicks.

III. COLLISIONLESS HEATING IN BOUNDED PLASMAS

To demonstrate this concept we consider the simple example where the electron acquires a

prescribed velocity kick ∆V cos(ωt+φ0) near one wall and oscillates between two walls with

separation L. Electrons experience collisions with frequency ν as in the previous section. A

schematic of the electron dynamics is shown in Fig. 5.

A. Influence of nonlinear effects on the diffusion coefficient in velocity space in

bounded plasmas

We consider a transverse to the plasma boundary velocity kick ∆Vy cos(ωt + φ0) corre-

sponding to model inductively coupled plasmas (ICP) in a slab geometry [6]. Collisions

lead to a diffusion in the energy space. Similar to the case of collisionless heating by a

single wave, the diffusion coefficient is the product of the squared energy change ∆ε and

the collision frequency ν, averaged over the electron ensemble with a given energy ε. In the

linear approximation ∆ε = mvy ṽy, where ṽy is the electron velocity change between colli-

sions. The velocity variations ṽy have an extreme maximum for resonant particles, which

after bouncing between the walls during the time 2L/vx arrive at the left wall to acquire the

same velocity kick, see Fig. 5. That requires the phase shift of the velocity kick to be equal

to 2πn, where n is an integer number. It’s important to note ,that only resonant particles

(vx,n = ωL/πn) contribute to collisionless heating, similar to the case of longitudinal waves

in the previous chapter, where only resonant particles (vx = ωk) contribute to heating for

unbounded plasmas. In the resonance region (vx ≈ vx,n), the evolution of the velocity is

described by the system of equations [20]

∆ṽy
∆i

= ∆Vy sinφ,
∆φ

∆i
=
ω

Ωb
− 2πn,

∆t

∆i
=

1

Ωb
, (13)

where ∆ denotes the change in a variable during one bounce, φ = ωt−2πnΩbt+φ0−π/2 is the

phase of the wave relative to the electron bounce motion, i is a bounce number, Ωb = vx/2L is

the bounce frequency, and ∆Vy is the amplitude of the kick. Near the resonance ω ≈ 2πnΩb

and the change in φ is small. Therefore, we can substitute the variations ∆ in Eq. (13) by
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differentials. Combining the two first equations in (13) gives

dṽy
dφ

= − ∆VyΩb

(ω − 2πnΩb)
sinφ. (14)

From Eq. (14) it follows that ṽy oscillates near the resonance with amplitude ∆VyΩb/(ω −
2πnΩb). Note that

Nb =
1

ω/Ωb − 2πn
(15)

is the number of bounces an electron experiences before the phase φ changes to 1 and the

kicks received by the electron have considerably different phase. Substituting ṽy from Eq.

(14) into Eq. (4) gives the diffusion coefficient in energy space

D(ε) =
m2∆V 2

y

2

∞∑
n=0

∫ π

0

d cosαdβ

4π
v2

yΩ2
b

ν

(ω − 2πnΩb)2 + ν2
. (16)

In the last factor of Eq. (16) we accounted for the fact that electrons leave the resonance

region due to collisions and, consequently, the amplitude of velocity variation in Eq. (14)

diminishes due to collisions. The rigorous derivation of the diffusion coefficient in energy

space was performed in Ref. [10] making use of the quasi-linear theory. The result of the

quasi-linear theory coincides with the euristic one-particle analysis of Ref. [20] discussed

above.

If the effective width (δvx) of the resonant factor in Eq. (16) is much smaller than the

thermal velocity (δvx ∼ νL/πn << VT ), the last factor of Eq. (16) can be replaced by a

delta-function:

D(ε) =
m2∆V 2

y

2

∞∑
n=0

∫ π

0

d cosαdβ

4π
(vy)2Ω2

bδ(ω − 2πnΩb). (17)

As a result, the diffusion coefficient does not depend on the collision frequency.

The previous analysis, however, pertains to the non-self-consistent problem with given

velocity kicks. In a real ICP plasma, the velocity kicks are directed along the x−axis,

notwithstanding the fact that the rf electric field Ey(x) cos(ωt+ φ0 − π/2) is directed along

the plasma boundary. It appears that the magnetic force ev ×B/c completely cancels

the action of the electric field in the y-direction [21]. It can be readily explained invoking

conservation of the canonical momentum Ay due to symmetry in y-direction. The total

canonical momentum eAy/c +mvy is conserved. Ay vanishes outside the skin layer where

the rf field does not penetrate. Consider an electron starting the motion from the plasma
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bulk where Ay = 0 and returning back. Ay is unchanged after one pass through the skin

layer. As a result, vy is unchanged also due to the conservation of the total momentum.

This means that the action of the rf electric field and the rf magnetic field on the electron

totaly compensate each other in the y-direction. The force evyBz/c generates the velocity

kicks in the x-direction. The Lorentz force e(E + v × B/c) produces the velocity kicks ∆Vx

only in the direction transverse to the boundary [21]. It is a consequence of the momentum

conservation - the momentum of the rf wave (photons) is imparted to electrons. The rf

magnetic field rotates the velocity kick from the y- to the x-direction, conserving the kinetic

energy, i.e.

Vx∆Vx = Vy∆Vy, (18)

where ∆Vy is the velocity kick calculated taking into account the electric field only

∆Vy =
e

m

∫
Ey[x(τ)] cos(ωτ + φ0 − π/2)dτ.

Here, the integral is taken along electron trajectory.

The fact that velocity kicks in ICP plasmas are directed in x−direction instead of

y−direction have a profound impact on the collisionless heating at low collision frequen-

cies. We saw in the previous section that nonlinear effects diminish the collisionless heating

by a single longitudinal wave. In ICP, nonlinear effects are introduced by the fact that the

bounce frequency itself depends on vx. The velocity kicks change the bounce frequency and

“kick” resonant electrons out of resonance.

This problem becomes similar to the nonlinear Landau damping problem, where nonlinear

effects also destroy the resonance condition ω = vxk. In the resonance region, the evolution

of velocity is described by a system of equations similar to Eq. (13), but where Ωb is not

constant and changes with vx

dvx
di

= ∆Vx sin φ,
dφ

di
=
ω

Ωb
− 2πn. (19)

Combining the two equations in Eq. (19) and using a Taylor series expansion near vx,n gives

ω

Ωb(vx)
− 2πn ≈ − ω

Ωb

vx − vx,n

vx,n
(20)

and
dvx
dφ

= − ∆VyΩbvx,n

ω(vx − vx,n)
sinφ. (21)
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Integrating Eq. (21) yields

(vx − vx,n)2 − Ωbvx,n

ω
∆Vx cosφ = const. (22)

Eq. (22) shows that even if the electron velocity initially satisfies the resonance condition

vx = vx,n exactly, the velocity perturbation ṽx = vx − vx,n is limited by
√

Ωbvx,n∆Vx/ω.

This is in contrast to Eq. (14). The number of bounces before the phase of the kick changes

to 1 is given by Eq. (15). Substituting results of Eqs. (20) and (22) into Eq. (15) gives the

typical time of changing of ṽx near the resonance due to nonlinear effects

τnl =
1√

ωΩ∆Vx/vx,n

.

The system of equations (19) can be formally described by the Hamiltonian

H(vx, ϕ) =
m

2
(vx − vx,res)

2 − mΩbvx,n

2ω
∆Vx cosϕ. (23)

This Hamiltonian coincides with the one in Eq. (3) of the electron trapped in a potential well.

Thus, one can use here the results of the calculation of the diffusion coefficient for nonlinear

Landau damping, Eq. (12), where time τr should be replaced by time τnl. Therefore, the

diffusion coefficient accounting for nonlinear effects reads

D(ε) =
m2∆V 2

y

2

∞∑
n=0

∫ π

0

d cosαdβ

4π
(vy)2Ω2

bδ(ω − 2πnΩb) tanh(2ντnl). (24)

From Eq. (24) one can see that nonlinear effects are important at small ν. In the limit

ντnl << 1 , the diffusion coefficient is proportional to ν and D(ε) → 0 as ν → 0. This is in

contrast to the linear theory Eq. (17), where D(ε) remains a constant as ν → 0.

A numerical example is shown in Fig. 6 for a model profile of the rf electric field Ey(x) =

E0exp(−x/δ). Fig. 6 is a plot of the diffusion coefficient for a fixed velocity (v = 5ωδ) as

a function of ν/ω, for two gap lengths L = 4δ/π and 25δ. The diffusion coefficient was

calculated by a Monte-Carlo method, as the ensemble averaged

Dv = 〈1

2

(∆v)2

∆t
〉, (25)

where ∆v = v(t + ∆t) − v(t) is the change in the absolute value of the velocity in a given

period of time ∆t. The Monte-Carlo simulation was compared with analytical results of the

linear theory Eq. (16), and the nonlinear theory Eq. (24). The results presented in Fig. 6
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correspond to three values of the electric field. For small fields the velocity kicks are also

small (∆Vx << vx) and theory agrees well with the MC simulation. For larger values of

the electric field the kicks are not small (∆Vx ∼ vx) and the theory presented here is not

applicable. The nonlinear effects with ∆Vx ∼ vx are also discussed in Ref. [23].

B. Influence of nonlinear effects on the surface impedance in bounded plasmas

In [22] and [24] the anomalous skin effect was considered ignoring the induced rf magnetic

field. To show the importance of nonlinear effects discussed above, the real part of the surface

impedance Z with and without taking nonlinear effects into account was calculated. The real

part of the surface impedance is related to the power absorption P by Re(Z) = 2P |Z|2 /E2
0 .

The power deposition into a unit volume of plasma, P , can be expressed in terms of Dv (Eq.

(17) or Eq. (24) and the electron energy distribution function f(ε) [10]

P = 4π

∫ ∞

0

vD(ε)
d

dε
f(v)dε. (26)

Figure 7 depicts the real part of the surface impedance as a function of ν/ω. The profile

of the electric field and the imaginary part of the surface impedance were taken in analytical

form from [22]. This Figure shows that the value of the real part of the surface impedance

decreases considerably at ντnl < 1 due to the influence of nonlinear effects. For typical values

of electric field amplitudes in self-sustained ICP (about several V/cm [52]), the nonlinear

effects start to be important for ν ∼ 0.3ω and the difference with the linear theory can be

as large as three orders of magnitude.

Until now, the collisionless heating was described only for a very simple case of a uniform

plasma with a prescribed electric field, but for real discharges the electric field has to be

determined self-consistently with EEDF and the ambipolar potential (or the density profile).

This requirement significantly entangles the task of correct description of plasma heating.

The way of handling of it is described in the next section.

13



IV. SELF-CONSISTENT SYSTEM OF EQUATIONS FOR A KINETIC DESCRIP-

TION OF THE LOW-PRESSURE DISCHARGES ACCOUNTING FOR THE NON-

LOCAL AND COLLISIONLESS ELECTRON DYNAMICS

We apply developed theory of collisionless heating to low pressure radio-frequency dis-

charges. These discharges are extensively utilized for plasma processing and lighting [7].

Simulation of discharge properties is a common engineering tool for optimization of the

plasma devices. Due to the large value of the electron mean free path (λ) the electron

current is determined not by the local rf electric field (Ohm’s law), but rather is a function

of the whole profile of the rf electric field over distances of order λ (anomalous skin effect).

Therefore, a rather complicated nonlocal conductivity operator has to be determined for the

calculation of the rf electric field penetration into the plasma. Moreover, the electron en-

ergy distribution function (EEDF) is typically non-Maxwellian in these discharges [8]. The

EEDF, nonlocal conductivity, and plasma density profiles are all nonlinear and nonlocally

coupled. Hence, for accurate calculation of the discharge characteristics at low pressures,

the EEDF needs to be computed self-consistently.

One of the ways to describe low-pressure discharge utilizes the so-called ”nonlocal” ap-

proach. In the past, the nonlocal approach was based on the assumption that the electron

mean free path is small compared with the discharge dimension. Recently we have updated

this approach to include the collisionless phenomena like anomalous skin effect and landau

damping into the description of nonlocal kinetics [61]. The nonlocal approach relies on the

direct semi-analytic solution of the Boltzmann equation in the limiting regime where the

electron energy relaxation length is much larger than the discharge gap [25–27]. Under these

conditions the EVDF is almost isotropic and can be well approximated as a sum of the main

isotropic part of EVDF f0 and small anisotropic part of the EVDF f1. Importantly, the main

part of EVDF is a function of the total energy only [f0(ε), where ε = mv2/2− eφ(r), φ(x) is

the electrostatic potential], instead of being a function of velocities and spatial coordinates

as in a general case f0(r,v). This assumption allows significant simplifications of the Boltz-

mann equation, which effectively reduces from a six-dimensional (3D3V ) problem in phase

space to a 1D problem for f0(ε) as a function of only ε. The final 1D equation for the elec-

tron energy distribution function is the temporal-spatial averaged Boltzmann equation over

phase space available for the electron with a given total energy ε. The ”nonlocal” approach
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is the opposite case to the ”local” description of a plasma, where f0(r,v) can be assumed to

be a function of only the kinetic energy and the local rf electric field f0[mv
2/2,E(r)] whereas

gradients of the local rf electric field and the influence of the ambipolar electric field are ne-

glected. The nonlocal approach has been successfully applied to the self-consistent kinetic

modelling of various low-pressure discharges: the capacitively coupled plasmas [28–31], the

inductively coupled plasmas [32–35], the dc discharges [36, 37], the afterglow [38], and the

surface-wave discharges [39]. Additional references can be found in reviews [40–42].

If the gas pressure is less than 10mTorr, the electron mean free path becomes comparable

or even larger than the discharge dimension and numerous collisionless phenomena dominate

the discharge characteristics [6]. Therefore, wide utilization of low pressure discharges calls

for ”upgrading” of the nonlocal approach by taking into account collisionless phenomena.

References [10] and [61] generalized the nonlocal approach for the low-pressure discharges

to incorporate the collisionless heating and transit-time (electron temporal and spatial in-

ertia) effects on the plasma conductivity in the discharge description. Here, we present the

nonlocal approach with a rigorous, self-consistent treatment of collisionless phenomena in

inhomogeneous plasmas. Similar approaches have been developed for calculation of the RF

heating in tokamaks [46] and for the analysis of kinetic instabilities in intense beams [47].

The key assumption of the nonlocal approach is that the EEDF is isotropic and is a

function of the total energy only. This assumption is based on the basic fact of atomic

physics that for a typical electron energy of few electronvolts the elastic collision frequency is

large compared to the inelastic collision frequency, which includes ionization and excitation

of the background gas. An electron collides elastically many times with atoms before it

losses energy due ionization or excitation. Elastic collisions scatter the electron velocity on

a large pitch angle and make the EEDF isotropic. In between inelastic collisions, an electron

acquires many velocity kicks from the rf electric field. This means that the electron thermal

velocity is large compared with single velocity kick and quasilinear theory (diffusion in the

energy space) can be utilized.

The derivations are lengthy. Therefore, and to be specific, the present analysis considers

only the case of an inductively coupled plasma (ICP); the schematic of an ICP is shown

in Fig. 8. Nevertheless, the approach has been designed in the most generalized way, so

that derivations can be readily performed for other discharges. For example, in Ref. [31] the

capacitive discharge, in Ref. [43] the electron-cyclotron-resonance discharge, and in Ref. [44]
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the surface-wave discharge were considered with self-consistent account for collisionless heat-

ing.

Most of the previously reported theoretical studies assume a uniform plasma, in a semi-

infinite [45] or a slab geometry [48]. In this case the analytical treatment simplifies con-

siderably, because electron trajectories are straight. In the semi-infinite geometry, electrons

traverse the region of the rf electric field (skin layer) and are reflected back into the plasma at

the discharge walls. An acquired velocity kick then dissipates in the plasma over distances of

the order of the electron mean free path and subsequent kicks can be assumed independent.

If the plasma dimension is small or comparable to λ, the subsequent kicks are correlated.

The resonance between the wave frequency and the bounce frequency of the electron mo-

tion between walls may result in a modification of the nonlocal conductivity [49, 50] and

may yield an enhanced electron heating [10, 20, 51]. The anomalous skin effect has been

studied experimentally in cylindrical [49] and planar discharges [52]. Additional references

can be found in the reviews of classic and recent works on the anomalous skin effect in gas

discharge plasmas [5, 53]. The theoretical studies in a cylindrical geometry are much more

cumbersome, and have been done for uniform plasmas in Refs. [54–56] and for a parabolic

potential well in Ref. [57]. Qualitative results in the cylindrical geometry are similar to the

results in the plane geometry; therefore, in the present study only the one-dimensional slab

geometry is considered.

For the case of a bounded uniform plasma, the electrostatic potential well is taken to be

flat in the plasma and infinite at the wall (to simulate the existence of sheaths). In this

square potential well, electrons are reflected back into the plasma only at the discharge walls.

In a realistic non-uniform plasma, however, the position of the turning points will depend on

the total (kinetic plus potential) electron energy and the actual shape of the potential well,

i.e., low total energy electrons bounce back at locations within the plasma and may not reach

regions of high electric field at all. As a result, the current density profiles in a nonuniform

plasma may differ considerably from the profiles in a uniform plasma. The theory of the

anomalous skin effect for an arbitrary electrostatic potential profile and a Maxwellian EEDF

was developed by Meierovich and coworkers in Refs. [58–60] for the slab geometry. Although

some rigorous analytical results of non-uniform plasmas have been reported, the detailed self-

consistent, nonlocal simulations related to such plasmas and comparison with experimental

data are still lacking. Self-consistent, nonlocal simulations based on the approach developed
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in this paper were completed recently and presented in our separate publications [62, 63]

and will be additionally reported in Ref.[64]. The alternative to the nonlocal approaches

are based on particle-in-cell simulations, and only recently were capable of the detailed

self-consistent, nonlocal kinetic simulations of low pressure discharges [9].

The kinetic description of the anomalous skin effect is similar to a well known mechanism

of collisionless power dissipation – the Landau damping [3]. In an infinite plasma, the

resonance particles that are moving with a velocity v close to the wave phase velocity, so

that ω = v · k, interact intensively with wave fields. Therefore, the collisionless electron

heating (and the real part of the surface impedance) depends on the magnitude of a Fourier

harmonic of the electric field E(k) and the number of the resonant particles f(vx = ω/k),

with x ‖ k. If the interaction with the skin layer is repeated in a resonant manner the

momentum changes mount up. Therefore, the main contribution to the electron heating

and the resistive part of the surface impedance comes from these near-resonant electrons. In

a bounded plasma, the resonance condition requires that the bounce period Tb be equal to

one or several rf electric field periods: Tb = 2πn/ω, where n is an integer number. Because

the bounce frequency depends on the electrostatic potential, accounting for the plasma

nonuniformity is important for a correct calculation of the efficient power coupling.

The first unambiguous measurements of a bounce-resonance effect were performed in a

non-neutral plasma. In Ref. [66] it was shown that the heating rate increases by a factor of

104 as the oscillation frequency of the externally applied rf field is increased by a factor of

10 near the thermal electron bounce frequency.

As discussed above, the collisionless heating is determined by the number of resonant

particles, and, hence, is dependent on the EEDF. The EEDF, in turn, is controlled by the

collisionless heating. Only the particles which are in resonance with a wave are heated by

the wave (collisionless heating). It means that in the regime of the collisionless dissipation,

the form of the electron energy distribution function is sensitive to the wave spectrum.

Therefore, a plateau in the EEDF can be formed in the regions of intensive collisionless

heating, if the wave phase velocities are confined in some interval [65]. The evidence of a

plateau formation for the capacitive discharge plasma were obtained in Ref. [51]. The cold

electrons, which are trapped in the discharge center, do not reach periphery plasma regions

where an intensive rf electric field is located and, as a result, these electrons are not heated

by the rf electric field. The coupling between the EEDF shape and collisionless heating may
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result in a new nonlinear phenomenon: an explosive generation of the cold electrons [28].

The experimental evidence of the influence of collisionless phenomena on the EEDF shape

were obtained in Refs. [52, 67–70].

A. Self-consistent system of equations

The self-consistent system of equations for the kinetic description of low-pressure dis-

charges accounting for nonlocal and collisionless electron dynamics contains the averaged

kinetic equation for f0(ε), the Maxwell equation for the rf electric field, the quasineutral-

ity condition for the electrostatic potential, and the ion density profile given by the fluid

conservation equations for ion density and ion momentum.

1. The averaged kinetic equation for f0 reads

− d
dε

(
Dε +Dee

) df0
dε

− d

dε

[
Vee + Vel

]
f0 =

∑
k

[
ν∗k(w + ε∗k)

√
(w + ε∗k)√
w

f0(ε+ ε∗k) − ν∗kf0
]
,

(27)

where the upper bar denotes averaging according to

L(x,v)(ε) =

∫ x+

x−
dxv(x, ε)L[x, v(x, ε)], (28)

v(x, ε) =
√

2[ε− ϕ(x)]/m, (29)

and the coefficients Vel, Vee, Dee are given by [71–73]

Vel =
2m

M
wν, (30)

Vee =
2wνee

n

(∫ w

0

dw
√
wf

)
, (31)

Dee =
4

3

wνee

n

(∫ w

0

dww3/2f + w3/2

∫ ∞

w

dwf,

)
(32)

νee =
4πΛeee

4n

m2v3
, (33)

where νee is the Coulomb collision frequency and Λee is the Coulomb logarithm. Note

that at large electron energies ε >> Te, Vee ≈ 2wνee and Dee ≈ 2wTeνee, where Te =

2/3
∫ w

0
dww3/2f/n; Dε is given by [10]
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Dε(ε) =
πe2

4m2

∞∑
n=−∞

∫ ε

0

dεx |Eyn(εx)|2 ε− εx
Ωb(εx)

ν

[Ωb(εx)n− ω]2 + ν2
, (34)

where

Eyn(εx) =
1

π

[∫ π

0

Ey(θ) cos (nθ) dθ

]
. (35)

Note that the above expression for Dε(ε) accounts for the bounce resonance Ωb(εx)n = ω

and the transit time resonance ω = v/δ, which correspond to maxima of Eyn(εx). Note

also that if the discharge gap is increased to infinity the sum over n can be replaced by

integral and bounce resonances will be transformed into wave-particle resonances ω = kv.

The expression for Dε(ε) in Eq. (34) has the extra factor v compared with D(ε) in Eqs. (16).

The v was incorporated into expression of Dε(ε) for the correct account of the phase space

volume on the right-hand side of the averaged kinetic equation, see Eq. (28).

2. The rf electric field is determined from the Maxwell equations

d2Ey

dx2
+
ω2

c2
Ey = −4πiω

c2
[j(x) + Iδ(x) − δantiIδ(x− L)] . (36)

Here, I is the current in the coil at x = 0; δanti = 0, if there is the grounded electrode and

no coil with current located at x = L as in Fig. 8, and δanti = 1, if there is a coil with the

current −I at x = L. The electron current density is given by [61]

jy(x) =

∫ x

0

G(x, x′)Ey(x′)dx′ +

∫ L

x

G(x′, x)Ey(x′)dx′, (37)

where

G(x, x′) =
1

2

e2√
2m

∫ ∞

max(ϕ,ϕ′)

cosh Φ cosh(Φ+ − Φ′)
sinh Φ+

Γ(ε)√
ε− ϕ(x)

√
ε− ϕ(x′)

dε, (38)

where we introduced a new function Γ(ε)

Γ(ε) ≡
∫ ∞

ε

f0(ε)dε. (39)

The 1D slab system of two currents flowing in opposite directions describes very well a

cylindrical configuration with radius R, where a coil produces rf currents at both plasma

boundaries x = 0 and x = 2R, R = L/2 [48, 49]. Eqs. (36) and (37) can be solved numer-

ically using a finite difference scheme. There is a major difficulty with such an approach:

straightforward computing of the complex Green’s function in Eq. (38) is slow and time

consuming [62]. A better approach is to solve the integro-differential Eq. (36) making use
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of a spectral method, where the electric field is represented as a sum of harmonic functions.

A robust procedure to solve this equation by FFT method is described in Ref. [61].

3. The electrostatic potential is obtained using the quasineutrality condition

ni(x) =

∫ ∞

ϕ(x)

f0(ε)
√
ε− ϕ(x)dε, (40)

where ni(x) is the ion density profile given by a set of fluid conservation equations for ion

density and ion momentum [62]. Eq. (40) is solved in the form of a differential equation [29]

dϕ

dx
= −T scr

e (x)
d ln[ni(x)]

dx
, (41)

where T scr
e (x) is the electron screening temperature

T scr
e (x) =

[
1

2n(x)

∫ ∞

ϕ(x)

f0(ε)
dε√

ε− ϕ(x)

]−1

. (42)

4. The power deposition can be computed as

P (x) =
1

2
Re

[
E∗

y(x)j(x)
]
. (43)

Integrating over the discharge length, Eq. ((43) becomes

P = −
√

2m

∫ ∞

0

Dε(ε)
df0(ε)

dε
dε. (44)

This equation can be used as a consistency check.

Figure 9 shows the rf electric field profiles calculated for a bounded plasma in a slab

geometry with and without the ambipolar potential ϕ = −4(x/R − 1)2 (in Volts) for two

cases: 1) the electron density at the electrode n(0) is equal to the electron density of the

uniform plasma n0, n(0) = n0, 2) the electron density in the center n(R) is equal to n0,

n(R) = n0, respectively. From Fig.9 it can be seen that taking into account an ambipolar

potential greatly alters the rf electric field profile.

Figure 10 shows comparisons between experimental data [52] and simulation predictions

using the non-local model [62]. The Ar ICP chamber was 19.8 cm in (inside) diameter

and 10.5 cm in length. The coil current driving frequency was 6.78 MHz. The EEDF was

assumed a Maxwellian, with an electron temperature obtained experimentally [52]. The

plasma density was set to the value measured experimentally [52]. The normalization factor

E0 for the rf field at the wall on the coil-side was obtained by matching the simulated

integrated power deposition with the experimental value for the power.
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Figures 10 (a) and (b) show reasonable agreement between the predicted (using the non-

local 1-D model) and measured RF field and the current density profiles. The field decreases

to a minimum and then goes through a hump. The qualitative features are captured with

the model, although the precise location of the minimum is not predicted well. This is due

to the fact that the actual discharge is 2-D, while the model is only 1-D.

Many previous works considered the anomalous skin effect for uniform plasmas without

taking into account the electrostatic potential. We performed numerical simulations with

and without taking into account an ambipolar potential. The presence of an ambipolar

electrostatic potential greatly affects the electron heating in several ways: First, the electro-

static potential confines low energy electrons to the center of the discharge plasma and these

electrons cannot reach the region of the strong field near the walls. Second, the number of

resonant electrons is larger if an electrostatic potential is taken into account. For example,

in the case of a parabolic potential, the bounce frequency is the same for all trapped elec-

trons. That means that if ω = Ωb, all trapped electrons are in resonance with the wave

and effectively absorb wave energy. Fig. 11 shows the plasma resistivity, or the real part

of impedance Z(Ω). The calculations were performed for the following discharge parame-

ters: electron temperature Te = 5 eV, peak electron density at the center of the discharge

ne = 5 × 1011cm−3, the rf field frequency ω = 8.52 × 107s−1, and the electron transport

frequency ν = 107s−1. In Fig. 11 it is clearly seen that the presence of the ambipolar poten-

tial enhances the resistivity of the plasma. The most profound changes in resistivity are for

the quadratic potential for a specific value of L, which satisfies ω = Ωb = (40eV/m)1/2/L.

The obtained results show explicitly that not taking into account the ambipolar potential -

as it is often done for simplicity - can lead to large discrepancies (more than 100 percent),

especially for the conditions corresponding to the bounce resonance. Further results of the

fully self-consistent calculations are presented in Ref. [64].
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[30] S.V. Berezhnoi, I.D. Kaganovich, M. Mǐsina, A. Bogaerts and R. Gijbels, IEEE Transactions

on plasma science 27, 1339 (1999).

[31] Igor D. Kaganovich, “Anomalous Capacitive Sheath with Deep Radio Frequency Elec-

tric Field Penetration,” Phys. Rev. Lett. 89, 265006 (2002); and a fuller version in

http://arxiv.org/PS cache/physics/pdf/0203/0203042.pdf.

[32] V. I. Kolobov and W. N. G. Hitchon, Phys. Rev. E 52, 972 (1995).

[33] V. I. Kolobov, G.J. Parker and W. N. G. Hitchon, Phys. Rev. E 53, 1110 (1996).

[34] U. Kortshagen, I. Pukropski and L. D. Tsendin, Phys. Rev. E 51, 6063 (1995).

[35] G. Muemkin, J. Phys. D 32, 804 (1999).

[36] V. I. Kolobov, and L. D. Tsendin, Phys. Rev. E 46, 7837 (1992).

[37] Y. Benke and Y.B. Golubovskij, Sov.Phys.-Tech. Phys. 39, 38 (1994).

[38] R.R. Arslanbekov and A.A. Kudryavtsev, Phys. Rev. E 58, 7785 (1998).

[39] Yu. M. Aliev, H. Schlueter and A. Shivarova, ”Guided-Wave-Produced Plasmas” (Springer,

Berlin-Heidelberg-New York 2000), chapter 6.

[40] L. D. Tsendin, Plasma Sources Sci. Technol. 4, 200 (1995).

[41] V. I. Kolobov and V. A. Godyak, IEEE Trans. Plasma Sci 23, 503 (1995).

[42] U. Kortshagen, C. Busch and L. D. Tsendin, Plasma Sources Sci. Technol. 5, 1 (1996).
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Figure 1. The bottom figure shows phase portrait of the trapped (solid line) and un-

trapped (dotted line) electrons. The separatrix line is shown as dashed. The potential is

shown on top.

Figure 2. Illustration of the difference between electron-ion (small angle) and electron-

atom (large angle) collisions. The top right figure shows the differential scattering cross

section. The bottom figure shows the electron velocity as function of time during several

collisions.

Figure 3. Resonance function in Eq. (7) in the limits ντr >> 1 and ντr << 1.

Figure 4. Dimensionless function Π(ν).

Figure 5. A schematic of the electron dynamics in a bounded plasma.

Figure 6. Influence of the second boundary on collisionless heating. Dimensionless

diffusion coefficient in velocity space G = Dv2m2ωL/e2E2
0δ for an electric field Ey =

E0exp(−x/δ) as a function of ν/ω for two different slab widths L = 4δ/π and L = 25δ.

Solid curves with circles correspond to the analytical formulae (17, 24), dashed lines are

Monte Carlo simulations.

Figure 7. The real part of the surface impedance in Ohm, ζ , as a function of ν/ω. The

plasma parameters are: density N = 1011 cm−3, Te = 5 eV, L = 4 cm.

Figure 8. Schematic of an inductively coupled plasma. The antenna on the left produces

inductive rf electric field (shown by a dashed line), which penetrates into the plasma over a

distance of the order of the skin depth. Electrons are confined by the stationary electrostatic

potential ϕ(x). Electrons with different total energy ε are confined in different regions of

the plasma.

Figure 9. The profile of the normalized amplitude of the rf electric field calculated for the

case of cylindrical-like geometry (slab geometry and two antisymmetric currents at x = 0

and x = 2R) as a function of the normalized coordinate x/R. The electron temperature is

Te = 2.5 eV and the uniform spatial electron density is n0 = 1012 cm−3, which corresponds to

ω/ΩbT = 1.5, ν/ΩbT = 0.3, and Rωp/c = 4.5. The solid line shows the profile for a uniform

plasma. Symbols correspond to a nonuniform plasma n(x) with a Boltzmann distribution

and the ambipolar potential φ = −4(x/R − 1)2 (in Volts) for two cases: 1) the electron

density at the electrode n(0) is equal to the electron density of the uniform plasma n0, and

in the rest of the plasma n(x) > n0, and 2) the electron density n(R) at the center is equal

to n0, and in the rest of the plasma n(x) < n0.
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Figure 10. Comparison between experimental data [52] and simulation predictions using

a non-local model: (a) RF electric field and (b) current density profiles, for a pressure of 1

mTorr.

Figure 11. Surface impedance as a function of discharge length for different plasma

profiles. Plasma and discharge parameters are ne = 5 × 1011cm−3, f = 13.56 MHz, ν =

107s−1, EEDF is Maxwellian with Te = 5 eV. The solid line shows the impedance of a uniform

plasma without any potential, the dashed line shows the impedance of a nonuniform plasma

with a potential ϕ(x) = −5(2x/L−1)2 in V, and the dash-dot line corresponds to a potential

ϕ(x) = −5(2x/L− 1)4.
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