15 research outputs found

    The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular diseases and their associated risk factors remain the main cause of mortality in western societies. In order to assess the prevalence of cardiovascular risk factors (CVRFs) in the Caucasian population of Lausanne, Switzerland, we conducted a population-based study (Colaus Study). A secondary aim of the CoLaus study will be to determine new genetic determinants associated with CVRFs.</p> <p>Methods</p> <p>Single-center, cross-sectional study including a random sample of 6,188 extensively phenotyped Caucasian subjects (3,251 women and 2,937 men) aged 35 to 75 years living in Lausanne, and genotyped using the 500 K Affymetrix chip technology.</p> <p>Results</p> <p>Obesity (body mass index ≥ 30 kg/m<sup>2</sup>), smoking, hypertension (blood pressure ≥ 140/90 mmHg and/or treatment), dyslipidemia (high LDL-cholesterol and/or low HDL-cholesterol and/or high triglyceride levels) and diabetes (fasting plasma glucose ≥ 7 mmol/l and/or treatment) were present in 947 (15.7%), 1673 (27.0%), 2268 (36.7%), 2113 (34.2%) and 407 (6.6%) of the participants, respectively, and the prevalence was higher in men than in women. In both genders, the prevalence of obesity, hypertension and diabetes increased with age.</p> <p>Conclusion</p> <p>The prevalence of major CVRFs is high in the Lausanne population in particular in men. We anticipate that given its size, the depth of the phenotypic analysis and the availability of dense genome-wide genetic data, the CoLaus Study will be a unique resource to investigate not only the epidemiology of isolated, or aggregated CVRFs like the metabolic syndrome, but can also serve as a discovery set, as well as replication set, to identify novel genes associated with these conditions.</p

    Evidence that fibroblasts derive from epithelium during tissue fibrosis

    Get PDF
    Interstitial fibroblasts are principal effector cells of organ fibrosis in kidneys, lungs, and liver. While some view fibroblasts in adult tissues as nothing more than primitive mesenchymal cells surviving embryologic development, they differ from mesenchymal cells in their unique expression of fibroblast-specific protein-1 (FSP1). This difference raises questions about their origin. Using bone marrow chimeras and transgenic reporter mice, we show here that interstitial kidney fibroblasts derive from two sources. A small number of FSP1(+), CD34(–) fibroblasts migrate to normal interstitial spaces from bone marrow. More surprisingly, however, FSP1(+) fibroblasts also arise in large numbers by local epithelial-mesenchymal transition (EMT) during renal fibrogenesis. Both populations of fibroblasts express collagen type I and expand by cell division during tissue fibrosis. Our findings suggest that a substantial number of organ fibroblasts appear through a novel reversal in the direction of epithelial cell fate. As a general mechanism, this change in fate highlights the potential plasticity of differentiated cells in adult tissues under pathologic conditions
    corecore