104 research outputs found

    Resource endowment and opportunity cost effects along the stages of entrepreneurship

    Get PDF
    In this paper, the start-up process is split conceptually into four stages: considering entrepreneurship, intending to start a new business in the next three years, nascent entrepreneurship, and owning-managing a newly established business. We investigate the determinants of all of these jointly, using a multinomial logit model; it allows for the effects of resources and capabilities to vary across these stages. We employ the Global Entrepreneurship Monitor database for the years 2006 to 2009, containing 8,269 usable observations from respondents drawn from the Lower Layer Super Output Areas in the East Midlands (UK) so that individual observations are linked to space. Our results show that the role of education, experience, and availability of 'entrepreneurial capital' in the local neighbourhood varies along the different stages of the entrepreneurial process. In the early stages the negative (opportunity cost) effect of resources endowment dominates, yet it tends to reverse in the advanced stages, where the positive effect of resources becomes stronger

    Lyapunov exponents as a dynamical indicator of a phase transition

    Full text link
    We study analytically the behavior of the largest Lyapunov exponent λ1\lambda_1 for a one-dimensional chain of coupled nonlinear oscillators, by combining the transfer integral method and a Riemannian geometry approach. We apply the results to a simple model, proposed for the DNA denaturation, which emphasizes a first order-like or second order phase transition depending on the ratio of two length scales: this is an excellent model to characterize λ1\lambda_1 as a dynamical indicator close to a phase transition.Comment: 8 Pages, 3 Figure

    Bubbles, clusters and denaturation in genomic DNA: modeling, parametrization, efficient computation

    Full text link
    The paper uses mesoscopic, non-linear lattice dynamics based (Peyrard-Bishop-Dauxois, PBD) modeling to describe thermal properties of DNA below and near the denaturation temperature. Computationally efficient notation is introduced for the relevant statistical mechanics. Computed melting profiles of long and short heterogeneous sequences are presented, using a recently introduced reparametrization of the PBD model, and critically discussed. The statistics of extended open bubbles and bound clusters is formulated and results are presented for selected examples.Comment: to appear in a special issue of the Journal of Nonlinear Mathematical Physics (ed. G. Gaeta

    Effect of defects on thermal denaturation of DNA Oligomers

    Full text link
    The effect of defects on the melting profile of short heterogeneous DNA chains are calculated using the Peyrard-Bishop Hamiltonian. The on-site potential on a defect site is represented by a potential which has only the short-range repulsion and the flat part without well of the Morse potential. The stacking energy between the two neigbouring pairs involving a defect site is also modified. The results are found to be in good agreement with the experiments.Comment: 11 pages including 5 postscript figure; To be appear in Phys. Rev.

    Thermodynamic instabilities in one dimensional particle lattices: a finite-size scaling approach

    Full text link
    One-dimensional thermodynamic instabilities are phase transitions not prohibited by Landau's argument, because the energy of the domain wall (DW) which separates the two phases is infinite. Whether they actually occur in a given system of particles must be demonstrated on a case-by-case basis by examining the (non-) analyticity properties of the corresponding transfer integral (TI) equation. The present note deals with the generic Peyrard-Bishop model of DNA denaturation. In the absence of exact statements about the spectrum of the singular TI equation, I use Gauss-Hermite quadratures to achieve a single-parameter-controlled approach to rounding effects; this allows me to employ finite-size scaling concepts in order to demonstrate that a phase transition occurs and to derive the critical exponents.Comment: 5 pages, 6 figures, subm. to Phys. Rev.

    Experimental and theoretical studies of sequence effects on the fluctuation and melting of short DNA molecules

    Get PDF
    Understanding the melting of short DNA sequences probes DNA at the scale of the genetic code and raises questions which are very different from those posed by very long sequences, which have been extensively studied. We investigate this problem by combining experiments and theory. A new experimental method allows us to make a mapping of the opening of the guanines along the sequence as a function of temperature. The results indicate that non-local effects may be important in DNA because an AT-rich region is able to influence the opening of a base pair which is about 10 base pairs away. An earlier mesoscopic model of DNA is modified to correctly describe the time scales associated to the opening of individual base pairs well below melting, and to properly take into account the sequence. Using this model to analyze some characteristic sequences for which detailed experimental data on the melting is available [Montrichok et al. 2003 Europhys. Lett. {\bf 62} 452], we show that we have to introduce non-local effects of AT-rich regions to get acceptable results. This brings a second indication that the influence of these highly fluctuating regions of DNA on their neighborhood can extend to some distance.Comment: To be published in J. Phys. Condensed Matte

    Roles of stiffness and excluded volume in DNA denaturation

    Full text link
    The nature and the universal properties of DNA thermal denaturation are investigated by Monte Carlo simulations. For suitable lattice models we determine the exponent c describing the decay of the probability distribution of denaturated loops of length l, P∼l−cP \sim l^{-c}. If excluded volume effects are fully taken into account, c= 2.10(4) is consistent with a first order transition. The stiffness of the double stranded chain has the effect of sharpening the transition, if it is continuous, but not of changing its order and the value of the exponent c, which is also robust with respect to inclusion of specific base-pair sequence heterogeneities.Comment: RevTeX 4 Pages and 4 PostScript figures included. Final version as publishe

    Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier

    Full text link
    We address the problem of heat conduction in 1-D nonlinear chains; we show that, acting on the parameter which controls the strength of the on site potential inside a segment of the chain, we induce a transition from conducting to insulating behavior in the whole system. Quite remarkably, the same transition can be observed by increasing the temperatures of the thermal baths at both ends of the chain by the same amount. The control of heat conduction by nonlinearity opens the possibility to propose new devices such as a thermal rectifier.Comment: 4 pages with figures included. Phys. Rev. Lett., to be published (Ref. [10] corrected
    • …
    corecore