44 research outputs found

    Insect Neurobiology: How Small Brains Perform Complex Tasks

    Get PDF
    SummaryA new study finds that bumblebees, like primates, can perform simple tasks that rely on rapid visual assessment, but unlike primates, require longer views for complex tasks. This suggests a fundamental difference in the way bees process visual information

    Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow

    Get PDF
    As a fly flies through its environment, static objects produce moving images on its retina, and this optic flow is essential for steering and course corrections. Different types of rotation and translation produce unique flow fields, which fly brains are wired to identify. However, a feature of optic flow unique to translational motion is that adjacent images may move across the retina at different speeds, depending on their distance from the observer. Many insects take advantage of this depth cue, called motion parallax, to determine the distance to objects. We wanted to know if differential object speeds affect the corrective responses of fruit flies when they experience unplanned course deviations. We presented tethered flying flies with optic flow and measured their corrective responses to sideways perturbations of images with different relative forward speeds. We found that flying flies attend to the relative speed of dots during forward motion, and adjust their corrective responses to sideslip deviations depending on this cue. With no other distinguishing features (such as brightness or size), flies mounted a greater response to sideways deviations that were signaled by faster moving dots in the forward flow field, those that appeared radially closer by their speeds. This is consistent with the interpretation that fruit flies attend to seemingly nearer objects, and correct more strongly when they indicate a perturbation

    Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light

    Get PDF
    Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions

    Theta Motion Processing in Fruit Flies

    Get PDF
    The tiny brains of insects presumably impose significant computational limitations on algorithms controlling their behavior. Nevertheless, they perform fast and sophisticated visual maneuvers. This includes tracking features composed of second-order motion, in which the feature is defined by higher-order image statistics, but not simple correlations in luminance. Flies can track the true direction of even theta motions, in which the first-order (luminance) motion is directed opposite the second-order moving feature. We exploited this paradoxical feature tracking response to dissect the particular image properties that flies use to track moving objects. We find that theta motion detection is not simply a result of steering toward any spatially restricted flicker. Rather, our results show that fly high-order feature tracking responses can be broken down into positional and velocity components – in other words, the responses can be modeled as a superposition of two independent steering efforts. We isolate these elements to show that each has differing influence on phase and amplitude of steering responses, and together they explain the time course of second-order motion tracking responses during flight. These observations are relevant to natural scenes, where moving features can be much more complex

    Light environment drives evolution of color vision genes in butterflies and moths

    Get PDF
    Opsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster—at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera

    Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species

    Get PDF
    Background: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. Results: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. Conclusions: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure–function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches

    Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species

    Get PDF
    Background. Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. Results. We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. Conclusions. Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure–function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches

    Theta motion processing in fruit flies.

    No full text

    A neural strategy for directional behaviour

    No full text
    Eyes are essential for revealing details that would otherwise stay hidden — even quiet or odourless objects cannot usually avoid interacting with light. The brain then uses this information to identify where an object is and decide whether it is desirable or repellent, ultimately transforming the visual patterns into the muscle activations that define a behavioural response. Topographic representations of visual space in the brain have been well documented in various species1,2, but it remains uncertain how neural circuitry converts object locations into directional behaviour. Writing in Nature, Dombrovski and colleagues3 describe a pattern of neural connectivity that accounts for some such transformations, allowing fruit flies (Drosophila melanogaster) to escape looming visual threats. This might be a common mechanism for turning sensory input into appropriate motor actions...Fil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Theobald, Jamie. Florida International University; Estados Unido

    Insect Neurobiology: An Eye to Forward Motion

    Get PDF
    For many animals, visual motion provides essential information for navigating through the environment. A new study in flies reveals novel neurons capable of multiplexing information of a visual scene and encoding relative depth perception from motion disparity. For many animals, visual motion provides essential information for navigating through the environment. A new study in flies reveals novel neurons capable of multiplexing information of a visual scene and encoding relative depth perception from motion disparity.Fil: Tomsic, Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Theobald, Jamie. Florida International University; Estados Unido
    corecore