52 research outputs found

    Pumpspeicherkraftwerke in stillgelegten Tagebauen: am Beispiel Hambach-Garzweiler-Inden

    Get PDF
    Mit fortschreitender Energiewende steigt der Anteil erneuerbarer Energien im Strommix. Deren Angebot variiert im Tagesverlauf, nach Wetterlage und saisonal. Um Angebot und Nachfrage zur Deckung zu bringen, benötigt es daher Speicher mit großen Kapazitäten. Von allen technologischen Optionen mit großer Speicherkapazität sind Wasser-Pumpspeicherwerke die einzige, die langjährig erprobt und wirtschaftlich ist. Diese könnten in Braunkohletagebauen, welche im Zuge der Energiewende aufgegeben werden, errichtet werden. Unsere Überschlagsrechnung am Beispiel eines Pumpspeicherwerks in den heutigen Tagebauen Hambach, Garzweiler und Inden zeigt, dass diese mit bis zu 400 GWh ein signifikantes technisches Speicherpotenzial haben. Dies entspricht etwa der kontinuierlichen Maximalleistung eines Kernkraftwerks über zwei Wochen. Im Kontext der Diskussion um den Braunkohleausstieg skizziert das Papier ein netzdienliches Nachnutzungskonzept für Braunkohletagebaue, das zumindest für einen Teil der heute in der Kohleförderung und -Verstromung Beschäftigten mögliche Zukunftsperspektiven bietet

    The relevance of multiple impacts of energy efficiency in policy-making and evaluation

    Get PDF
    Improvements in energy efficiency have numerous impacts additional to energy and greenhouse gas savings. This paper presents key findings and policy recommendations of the COMBI project ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe"). This project aimed at quantifying the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in 2030. It covered the most relevant technical energy efficiency improvement actions in buildings, transport and industry. Quantified impacts include reduced air pollution (and its effects on human health, eco-systems), improved social welfare (health, productivity), saved biotic and abiotic resources, effects on the energy system and energy security, and the economy (employment, GDP, public budgets and energy/EU-ETS prices). The paper shows that a more ambitious energy efficiency policy in Europe would lead to substantial impacts: overall, in 2030 alone, monetized multiple impacts (MI) would amount to 61 bn Euros per year in 2030, i.e. corresponding to approx. 50% of energy cost savings (131 bn Euros). Consequently, the conservative CBA approach of COMBI yields that including MI quantifications to energy efficiency impact assessments would increase the benefit side by at least 50-70%. As this analysis excludes numerous impacts that could either not be quantified or monetized or where any double-counting potential exists, actual benefits may be much larger. Based on these findings, the paper formulates several recommendations for EU policy making: (1) the inclusion of MI into the assessment of policy instruments and scenarios, (2) the need of reliable MI quantifications for policy design and target setting, (3) the use of MI for encouraging inter-departmental and cross-sectoral cooperation in policy making to pursue common goals, and (4) the importance of MI evaluations for their communication and promotion to decision-makers, stakeholders, investors and the general public

    Integration fluktuierender erneuerbarer Energien durch konvergente Nutzung von Strom- und Gasnetzen - Konvergenz Strom- und Gasnetze (KonStGas) - Abschlussbericht

    Get PDF
    Für die Energiewende in Deutschland ist zeitnah ein nennenswerter Ausbau der Stromnetze auf Transport- und Verteilnetzebene erforderlich. Mittel- bis langfristig werden für die Umstellung der Strom- und Energieversorgung auf erneuerbaren Energien (EE) zusätzlich große Speicherkapazitäten benötigt. Dabei sind kostengünstige und mit minimalen Energieverlusten verbundene Speicher- und Erzeugungstechnologien anzustreben. Lösungsansätze dafür werden bisher überwiegend auf der Stromseite diskutiert. Chancen, die sich aus der Kopplung von Strom- und Gasnetzen ergeben, werden kaum wahrgenommen. Das erhebliche Lösungspotential der vorhandenen Gasinfrastruktur und -Anwendungstechnologien mittels Power-to-Gas sowie die damit verbundenen Auswirkungen auf eine nachhaltige Gestaltung der Energiewende finden zu wenig Beachtung. Vor diesem Hintergrund hatte das Forschungsvorhaben "Integration fluktuierender erneuerbarer Energien durch konvergente Nutzung von Strom und Gasnetzen - Konvergenz Strom- und Gasnetze" zum Ziel, unter Berücksichtigung der Kopplung von Strom- und Gasnetzen, (1) die Potenziale zur Aufnahme, Speicherung und Verteilung von EE zu bestimmen, (2) die dynamischen Energieströme aus Angebot und Nachfrage in der gesamten Energieversorgungsstruktur zu modellieren, (3) die Kopplung volkswirtschaftlich zu analysieren und (4) Handlungsempfehlungen für den Ausbau der Netzinfrastrukturen und die Entwicklung eines zukünftigen Energiemarktes abzuleiten

    Pumpspeicherkraftwerke in stillgelegten Tagebauen : am Beispiel Hambach-Garzweiler-Inden

    Get PDF
    Mit fortschreitender Energiewende steigt der Anteil erneuerbarer Energien im Strommix. Deren Angebot variiert im Tagesverlauf, nach Wetterlage und saisonal. Um Angebot und Nachfrage zur Deckung zu bringen, benötigt es daher Speicher mit großen Kapazitäten. Von allen technologischen Optionen mit großer Speicherkapazität sind Wasser-Pumpspeicherwerke die einzige, die langjährig erprobt und wirtschaftlich ist. Diese könnten in Braunkohletagebauen, welche im Zuge der Energiewende aufgegeben werden, errichtet werden. Unsere Überschlagsrechnung am Beispiel eines Pumpspeicherwerks in den heutigen Tagebauen Hambach, Garzweiler und Inden zeigt, dass diese mit bis zu 400 GWh ein signifikantes technisches Speicherpotenzial haben. Dies entspricht etwa der kontinuierlichen Maximalleistung eines Kernkraftwerks über zwei Wochen. Im Kontext der Diskussion um den Braunkohleausstieg skizziert das Papier ein netzdienliches Nachnutzungskonzept für Braunkohletagebaue, das zumindest für einen Teil der heute in der Kohleförderung und -Verstromung Beschäftigten mögliche Zukunftsperspektiven bietet

    Nachnutzungskonzept: Braunkohle-Tagebaue als Pumpspeicherkraftwerk?

    Get PDF
    Der Anteil fluktuierender erneuerbarer Energien im deutschen Strommix steigt. Um die Netzstabilität zu erhalten, Fluktuationen im Dargebot nach Wetterlage und saisonal auszugleichen sind absehbar ab ca. 2030 große Stromspeicherkapazitäten erforderlich. Wasser-Pumpspeicherwerke sind derzeit die einzige langjährig erprobte Technologie, die künftig in Braunkohletagebauen, welche im Zuge der Energiewende aufgegeben werden, errichtet werden könnten. Eine Überschlagsrechnung am Beispiel eines Pumpspeicherwerks in verschiedenen Tagebauen zeigt, dass diese mit bis zu 400 GWh ein signifikantes technisches Speicherpotenzial haben

    Biological CO2-Methanation: An Approach to Standardization

    No full text
    Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are difficult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes

    Combining a robust thermophilic methanogen and packing material with high liquid hold-up to optimize biological methanation in trickle-bed reactors

    No full text
    The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop (R)

    Optimized biological CO2-methanation with a pure culture of thermophilic methanogenic archaea in a trickle-bed reactor

    No full text
    In this study, a fully automated process converting hydrogen and carbon dioxide to methane in a high temperature trickle-bed reactor was developed from lab scale to field test level. The reactor design and system performance was optimized to yield high methane content in the product gas for direct feed-in to the gas grid. The reaction was catalyzed by a pure culture of Methanothermobacter thermoautotrophicus IM5, which formed a biofilm on ceramic packing elements. During 600 h in continuous and semi-continuous operation in countercurrent flow, the 0.05 m3 reactor produced up to 95.3 % of methane at a methane production rate of 0.35 m3CH4 mg3h- 1. Adding nitrogen as carrier gas during startup, foam control and dosing of ammonium and sodium sulfide as nitrogen and sulfur source were important factors for process automation
    corecore