301 research outputs found
Single and Composite Hot Subdwarf Stars in the Light of 2MASS Photometry
Utilizing the Two Micron All Sky Survey (2MASS) Second Incremental Data
Release Catalog, we have retrieved near-IR magnitudes for several hundred hot
subdwarfs (sdO and sdB stars) drawn from the "Catalogue of Spectroscopically
Identified Hot Subdwarfs" (Kilkenny, Heber, & Drilling 1988, 1992). This sample
size greatly exceeds that of previous studies of hot subdwarfs. Examining 2MASS
photometry alone or in combination with visual photometry (Johnson BV or
Stromgren uvby) available in the literature, we show that it is possible to
identify hot subdwarf stars that exhibit atypically red IR colors that can be
attributed to the presence of an unresolved late type companion. Utilizing this
large sample, we attempt for the first time to define an approximately volume
limited sample of hot subdwarfs. We discuss the considerations, biases, and
difficulties in defining such a sample.
We find that, of the hot subdwarfs in Kilkenny et al., about 40% in a
magnitude limited sample have colors that are consistent with the presence of
an unresolved late type companion. Binary stars are over-represented in a
magnitude limited sample. In an approximately volume limited sample the
fraction of composite-color binaries is about 30%.Comment: to appear in Sept 2003 AJ, 41 pages total, 12 figures, 2 tables are
truncated (full tables to appear in electronic journal or available by
request
High resolution spectroscopy of bright subdwarf B stars - I. Radial velocity variables
Radial velocity curves for 15 bright subdwarf B binary systems have been
measured using high precision radial velocity measurements from high S/N
optical high-resolution spectra. In addition, two bright sdB stars are
discovered to be radial velocity variable but the period could not yet be
determined. The companions for all systems are unseen. The periods range from
about 0.18 days up to more than ten days. The radial velocity semi amplitudes
are found to lie between 15 and 130 km/s. Using the mass functions, the masses
of the unseen companions have been constrained to lower limits of 0.03 up to
0.55 M_sun, and most probable values of 0.03 up to 0.81 M_sun. The invisible
companions for three of our program stars are undoubtedly white dwarfs. In the
other cases they could be either white dwarfs or main sequence stars. For two
stars the secondaries could possibly be brown dwarfs. As expected, the orbits
are circular for most of the systems. However, for one third of the program
stars we find slightly eccentric orbits with small eccentricities of
e~0.02-0.06. This is the first time that non-circular orbits have been found in
sdB binaries. No correlation with the orbital period can be found.Comment: Accepted for publication in A&A, 10 pages, 5 figures, quality of
Fig.2 is downgraded to fit in the astroph requirement
Fluctuations of elastic interfaces in fluids: Theory and simulation
We study the dynamics of elastic interfaces-membranes-immersed in thermally
excited fluids. The work contains three components: the development of a
numerical method, a purely theoretical approach, and numerical simulation. In
developing a numerical method, we first discuss the dynamical coupling between
the interface and the surrounding fluids. An argument is then presented that
generalizes the single-relaxation time lattice-Boltzmann method for the
simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of the new method is outlined and it is tested by
simulating the static behavior of spherical bubbles and the dynamics of bending
waves. By means of the fluctuation-dissipation theorem we recover analytically
the equilibrium frequency power spectrum of thermally fluctuating membranes and
the correlation function of the excitations. Also, the non-equilibrium scaling
properties of the membrane roughening are deduced, leading us to formulate a
scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where
W, L and T are the width of the interface, the linear size of the system and
the temperature respectively, and g is a scaling function. Finally, the
phenomenology of thermally fluctuating membranes is simulated and the frequency
power spectrum is recovered, confirming the decay of the correlation function
of the fluctuations. As a further numerical study of fluctuating elastic
interfaces, the non-equilibrium regime is reproduced by initializing the system
as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure
Evolving a photosynthetic organelle
The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
- …