54 research outputs found

    The new Toulouse-Geneva Stellar Evolution Code including radiative accelerations of heavy elements

    Full text link
    Atomic diffusion has been recognized as an important process that has to be considered in any computations of stellar models. In solar-type and cooler stars, this process is dominated by gravitational settling, which is now included in most stellar evolution codes. In hotter stars, radiative accelerations compete with gravity and become the dominant ingredient in the diffusion flux for most heavy elements. Introducing radiative accelerations into the computations of stellar models modifies the internal element distribution and may have major consequences on the stellar structure. Coupling these processes with hydrodynamical stellar motions has important consequences that need to be investigated in detail. We aim to include the computations of radiative accelerations in a stellar evolution code (here the TGEC code) using a simplified method (SVP) so that it may be coupled with sophisticated macroscopic motions. We also compare the results with those of the Montreal code in specific cases for validation and study the consequences of these coupled processes on accurate models of A- and early-type stars. We implemented radiative accelerations computations into the Toulouse-Geneva stellar evolution code following the semi-analytical prescription proposed by Alecian and LeBlanc. This allows more rapid computations than the full description used in the Montreal code. We present results for A-type stellar models computed with this updated version of TGEC and compare them with similar published models obtained with the Montreal evolution code. We discuss the consequences for the coupling with macroscopic motions, including thermohaline convection.Comment: 12 pages, 13 figures, published in A&

    Mark Campana rides into the sunset

    Get PDF

    The convective envelope in gamma Doradus stars: theoretical uncertainties

    Full text link
    The depth of the convective envelope plays a fundamental role in the driving mechanism proposed by Guzik et al. (2000) to explain the high-order g modes of gamma Dor pulsators. In this poster we study the sensitivity of the convective envelope depth to the description of convective transport, to relevant physical processes, such as microscopic diffusion, and to other uncertainties in theoretical stellar models.Comment: 2 pags. 1 fig. Poster in Vienna Workshop on the Future of Asteroseismology, September 20-22, 2006. To be published by CoAs

    Theado’s Thoughts on Beep Ball

    Get PDF
    I’ll give you one word that describes playing beep ball: scary. I mean, you are blindfolded first of all, and how often does that happen in your life? Maybe we see hostages on TV or kidnap victims in movies, but when you’re blindfolded, you cannot see.https://digitalcommons.gardner-webb.edu/gardner-webb-newscenter-archive/2985/thumbnail.jp

    Asteroseismology of exoplanets host stars: the special case of ι\iota Horologii (HD17051)

    Full text link
    {This paper presents detailed analysis and modelisation of the star HD17051 (alias ι\iota Hor), which appears as a specially interesting case among exoplanet host stars. As most of these stars, ι\iota Hor presents a metallicity excess which has been measured by various observers who give different results, ranging from [Fe/H] = 0.11 to 0.26, associated with different atmospheric parameters. Meanwhile the luminosity of the star may be determined owing to Hipparcos parallax. Although in the southern hemisphere, this star belongs to the Hyades stream and its external parameters show that it could even be one of the Hyades stars ejected during cluster formation. The aim of this work was to gather and analyse our present knowledge on this star and to prepare seismic tests for future observations with the HARPS spectrometer (planned for November 2006).} {We have computed evolutionary tracks with various metallicities, in the two frameworks of primordial overmetallicity and accretion. We have concentrated on models inside the error boxes given by the various observers in the log g - log Teff_{eff} diagram. We then computed the adiabatic oscillation frequencies of these models to prepare future observations.} {The detailed analysis of ι\iota Hor presented in this paper already allowed to constrain its external parameters, mass and age. Some values given in the literature could be rejected as inconsistent with the overall analysis. We found that a model computed with the Hyades parameters (age, metallicity) was clearly acceptable, but other ones were possible too. We are confident that observations with HARPS will allow for a clear conclusion about this star and that it will bring important new light on the physics of exoplanet host stars.}Comment: to be published in Astronomy and Astrophysic

    On the Coupling between Helium Settling and Rotation-Induced Mixing in Stellar Radiative Zones: II- Application to light elements in population I main-sequence stars

    Full text link
    In the two previous papers of this series, we have discussed the importance of t he μ\mu-gradients due to helium settling on rotation-induced mixing, first in a n approximate analytical way, second in a 2D numerical simulation. We have found that, for slowly rotating low mass stars, a process of ``creeping paralysis" in which the circulation and the diffusion are nearly frozen may take place below the convective zone. Here we apply this theory to the case of lithium and beryll ium in galactic clusters and specially the Hyades. We take into account the rota tional braking with rotation velocities adjusted to the present observations. We find that two different cells of meridional circulation appear on the hot side of the "lithium dip" and that the "creeping paralysis" process occurs, not dir ectly below the convective zone, but deeper inside the radiative zone, at the to p of the second cell. As a consequence, the two cells are disconnected, which ma y be the basic reason for the lithium increase with effective temperature on thi s side of the dip. On the cool side, there is just one cell of circulation and t he paralysis has not yet set down at the age of the Hyades; the same modelisatio n accounts nicely for the beryllium observations as well as for the lithium ones .Comment: 13 printed pages, 10 figures. ApJ, in press (April 20, 2003
    • …
    corecore