7 research outputs found

    An inherited duplication at the gene p21 protein-activated Kinase 7 (PAK7) is a risk factor for psychosis

    Get PDF
    FUNDING Funding for this study was provided by the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z), the Wellcome Trust (072894/Z/03/Z, 090532/Z/09/Z and 075491/Z/04/B), NIMH grants (MH 41953 and MH083094) and Science Foundation Ireland (08/IN.1/B1916). We acknowledge use of the Trinity Biobank sample from the Irish Blood Transfusion Service; the Trinity Centre for High Performance Computing; British 1958 Birth Cohort DNA collection funded by the Medical Research Council (G0000934) and the Wellcome Trust (068545/Z/02) and of the UK National Blood Service controls funded by the Wellcome Trust. Chris Spencer is supported by a Wellcome Trust Career Development Fellowship (097364/Z/11/Z). Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust. ACKNOWLEDGEMENTS The authors sincerely thank all patients who contributed to this study and all staff who facilitated their involvement. We thank W. Bodmer and B. Winney for use of the People of the British Isles DNA collection, which was funded by the Wellcome Trust. We thank Akira Sawa and Koko Ishzuki for advice on the PAK7–DISC1 interaction experiment and Jan Korbel for discussions on mechanism of structural variation.Peer reviewedPublisher PD

    Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC

    No full text
    The Schizophrenia Psychiatric Genome-Wide Association Study Consortium (PGC) highlighted 81 single-nucleotide polymorphisms (SNPs) with moderate evidence for association to schizophrenia. After follow-up in independent samples, seven loci attained genome-wide significance (GWS), but multi-locus tests suggested some SNPs that did not do so represented true associations. We tested 78 of the 81 SNPs in 2640 individuals with a clinical diagnosis of schizophrenia attending a clozapine clinic (CLOZUK), 2504 cases with a research diagnosis of bipolar disorder, and 2878 controls. In CLOZUK, we obtained significant replication to the PGC-associated allele for no fewer than 37 (47%) of the SNPs, including many prior GWS major histocompatibility complex (MHC) SNPs as well as 3/6 non-MHC SNPs for which we had data that were reported as GWS by the PGC. After combining the new schizophrenia data with those of the PGC, variants at three loci (ITIH3/4, CACNA1C and SDCCAG8) that had not previously been GWS in schizophrenia attained that level of support. In bipolar disorder, we also obtained significant evidence for association for 21% of the alleles that had been associated with schizophrenia in the PGC. Our study independently confirms association to three loci previously reported to be GWS in schizophrenia, and identifies the first GWS evidence in schizophrenia for a further three loci. Given the number of independent replications and the power of our sample, we estimate 98% (confidence interval (CI) 78–100%) of the original set of 78 SNPs represent true associations. We also provide strong evidence for overlap in genetic risk between schizophrenia and bipolar disorder

    MICA, a gene contributing strong susceptibility to ankylosing spondylitis

    No full text
    OBJECTIVE: The human major histocompatibility complex class I chain-related gene A (MICA) controls the immune process by balancing activities of natural killer cells, δ T cells and αβ CD8 T cells, and immunosuppressive CD4 T cells. MICA is located near HLA-B on chromosome 6. Recent genomewide association studies indicate that genes most strongly linked to ankylosing spondylitis (AS) susceptibility come from the region containing HLA-B and MICA. While HLA-B27 is a well-known risk genetic marker for AS, the potential effect of linkage disequilibrium (LD) shields any associations of genes around HLA-B with AS. The aim of this study was to investigate a novel independent genetic association of MICA to AS. METHODS: We examined 1543 AS patients and 1539 controls from two ethnic populations by sequencing MICA and genotyping HLA-B alleles. Initially, 1070 AS patients and 1003 controls of European ancestry were used as a discovery cohort, followed by a confirmation cohort of 473 Han Chinese AS patients and 536 controls. We performed a stratified analysis based on HLA-B27 carrier status. We also conducted logistic regression with a formal interaction term. RESULTS: Sequencing of MICA identified that MICA*007:01 is a significant risk allele for AS in both Caucasian and Han Chinese populations, and that MICA*019 is a major risk allele in Chinese AS patients. Conditional analysis of MICA alleles on HLA-B27 that unshielded LD effect confirmed associations of the MICA alleles with AS. CONCLUSIONS: Parallel with HLA-B27, MICA confers strong susceptibility to AS in US white and Han Chinese populations
    corecore