25 research outputs found

    A causal effects of gut microbiota in the development of migraine

    Get PDF
    Publisher Copyright: © 2023, The Author(s).BACKGROUND: The causal association between the gut microbiome and the development of migraine and its subtypes remains unclear. METHODS: The single nucleotide polymorphisms concerning gut microbiome were retrieved from the gene-wide association study (GWAS) of the MiBioGen consortium. The summary statistics datasets of migraine, migraine with aura (MA), and migraine without aura (MO) were obtained from the GWAS meta-analysis of the International Headache Genetics Consortium (IHGC) and FinnGen consortium. Inverse variance weighting (IVW) was used as the primary method, complemented by sensitivity analyses for pleiotropy and increasing robustness. RESULTS: In IHGC datasets, ten, five, and nine bacterial taxa were found to have a causal association with migraine, MA, and MO, respectively, (IVW, all P < 0.05). Genus.Coprococcus3 and genus.Anaerotruncus were validated in FinnGen datasets. Nine, twelve, and seven bacterial entities were identified for migraine, MA, and MO, respectively. The causal association still exists in family.Bifidobacteriaceae and order.Bifidobacteriales for migraine and MO after FDR correction. The heterogeneity and pleiotropy analyses confirmed the robustness of IVW results. CONCLUSION: Our study demonstrates that gut microbiomes may exert causal effects on migraine, MA, and MO. We provide novel evidence for the dysfunction of the gut-brain axis on migraine. Future study is required to verify the relationship between gut microbiome and the risk of migraine and its subtypes and illustrate the underlying mechanism between them.Peer reviewe

    Migraine, inflammatory bowel disease and celiac disease: A Mendelian randomization study

    Full text link
    Objective: To assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease. Background: Migraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition. Methods: Linkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed. Results: Migraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99-1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99-1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96-1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79-1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00-1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92-0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02-1.29, p = 0.025). However, the results were not significant after multiple testing correction. Conclusions: We found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes. Keywords: Mendelian randomization; celiac disease; gastrointestinal disease; genetic correlation; inflammatory bowel disease; migraine

    Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease.

    Get PDF
    Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson's disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson's disease

    Genetic correlations of psychiatric traits with body composition and glycemic traits are sex- and age-dependent

    Get PDF
    Body composition is often altered in psychiatric disorders. Using genome-wide common genetic variation data, we calculate sex-specific genetic correlations amongst body fat %, fat mass, fat-free mass, physical activity, glycemic traits and 17 psychiatric traits (up to N = 217,568). Two patterns emerge: (1) anorexia nervosa, schizophrenia, obsessive-compulsive disorder, and education years are negatively genetically correlated with body fat % and fat-free mass, whereas (2) attention-deficit/hyperactivity disorder (ADHD), alcohol dependence, insomnia, and heavy smoking are positively correlated. Anorexia nervosa shows a stronger genetic correlation with body fat % in females, whereas education years is more strongly correlated with fat mass in males. Education years and ADHD show genetic overlap with childhood obesity. Mendelian randomization identifies schizophrenia, anorexia nervosa, and higher education as causal for decreased fat mass, with higher body fat % possibly being a causal risk factor for ADHD and heavy smoking. These results suggest new possibilities for targeted preventive strategies

    Cross-trait analyses with migraine reveal widespread pleiotropy and suggest a vascular component to migraine headache

    Get PDF
    Background: Nearly a fifth of the world's population suffer from migraine headache, yet risk factors for this disease are poorly characterized. Methods: To further elucidate these factors, we conducted a genetic correlation analysis using cross-trait linkage disequilibrium (LD) score regression between migraine headache and 47 traits from the UK Biobank. We then tested for possible causality between these phenotypes and migraine, using Mendelian randomization. In addition, we attempted replication of our findings in an independent genome-wide association study (GWAS) when available. Results: We report multiple phenotypes with genetic correlation (P < 1.06 × 10-3) with migraine, including heart disease, type 2 diabetes, lipid levels, blood pressure, autoimmune and psychiatric phenotypes. In particular, we find evidence that blood pressure directly contributes to migraine and explains a previously suggested causal relationship between calcium and migraine. Conclusions: This is the largest genetic correlation analysis of migraine headache to date, both in terms of migraine GWAS sample size and the number of phenotypes tested. We find that migraine has a shared genetic basis with a large number of traits, indicating pervasive pleiotropy at migraine-associated loci.Peer reviewe

    Genetic Overlap Analysis Identifies a Shared Etiology between Migraine and Headache with Type 2 Diabetes

    No full text
    Migraine and headache frequently co-occur with type 2 diabetes (T2D), suggesting a shared aetiology between the two conditions. We used genome-wide association study (GWAS) data to investigate the genetic overlap and causal relationship between migraine and headache with T2D. Using linkage disequilibrium score regression (LDSC), we found a significant genetic correlation between migraine and T2D (rg = 0.06, p = 1.37 &times; 10&minus;5) and between headache and T2D (rg = 0.07, p = 3.0 &times; 10&minus;4). Using pairwise GWAS (GWAS-PW) analysis, we identified 11 pleiotropic regions between migraine and T2D and 5 pleiotropic regions between headache and T2D. Cross-trait SNP meta-analysis identified 23 novel SNP loci (Pmeta &lt; 5 &times; 10&minus;8) associated with migraine and T2D, and three novel SNP loci associated with headache and T2D. Cross-trait gene-based overlap analysis identified 33 genes significantly associated (Pgene-based &lt; 3.85 &times; 10&minus;6) with migraine and T2D, and 11 genes associated with headache and T2D, with 7 genes (EHMT2, SLC44A4, PLEKHA1, CFDP1, TMEM170A, CHST6, and BCAR1) common between them. There was also a significant overlap of genes nominally associated (Pgene-based &lt; 0.05) with both migraine and T2D (Pbinomial-test = 2.83 &times; 10&minus;46) and headache and T2D (Pbinomial-test = 4.08 &times; 10&minus;29). Mendelian randomisation (MR) analyses did not provide consistent evidence for a causal relationship between migraine and T2D. However, we found headache was causally associated (inverse-variance weighted, ORIVW = 0.90, Pivw = 7 &times; 10&minus;3) with T2D. Our findings robustly confirm the comorbidity of migraine and headache with T2D, with shared genetically controlled biological mechanisms contributing to their co-occurrence, and evidence for a causal relationship between headache and T2D

    Genetic Overlap Analysis Identifies a Shared Etiology between Migraine and Headache with Type 2 Diabetes

    No full text
    Migraine and headache frequently co-occur with type 2 diabetes (T2D), suggesting a shared aetiology between the two conditions. We used genome-wide association study (GWAS) data to investigate the genetic overlap and causal relationship between migraine and headache with T2D. Using linkage disequilibrium score regression (LDSC), we found a significant genetic correlation between migraine and T2D (rg = 0.06, p = 1.37 × 10−5) and between headache and T2D (rg = 0.07, p = 3.0 × 10−4). Using pairwise GWAS (GWAS-PW) analysis, we identified 11 pleiotropic regions between migraine and T2D and 5 pleiotropic regions between headache and T2D. Cross-trait SNP meta-analysis identified 23 novel SNP loci (Pmeta −8) associated with migraine and T2D, and three novel SNP loci associated with headache and T2D. Cross-trait gene-based overlap analysis identified 33 genes significantly associated (Pgene-based −6) with migraine and T2D, and 11 genes associated with headache and T2D, with 7 genes (EHMT2, SLC44A4, PLEKHA1, CFDP1, TMEM170A, CHST6, and BCAR1) common between them. There was also a significant overlap of genes nominally associated (Pgene-based Pbinomial-test = 2.83 × 10−46) and headache and T2D (Pbinomial-test = 4.08 × 10−29). Mendelian randomisation (MR) analyses did not provide consistent evidence for a causal relationship between migraine and T2D. However, we found headache was causally associated (inverse-variance weighted, ORIVW = 0.90, Pivw = 7 × 10−3) with T2D. Our findings robustly confirm the comorbidity of migraine and headache with T2D, with shared genetically controlled biological mechanisms contributing to their co-occurrence, and evidence for a causal relationship between headache and T2D

    A causal effects of gut microbiota in the development of migraine

    No full text
    Abstract Background The causal association between the gut microbiome and the development of migraine and its subtypes remains unclear. Methods The single nucleotide polymorphisms concerning gut microbiome were retrieved from the gene-wide association study (GWAS) of the MiBioGen consortium. The summary statistics datasets of migraine, migraine with aura (MA), and migraine without aura (MO) were obtained from the GWAS meta-analysis of the International Headache Genetics Consortium (IHGC) and FinnGen consortium. Inverse variance weighting (IVW) was used as the primary method, complemented by sensitivity analyses for pleiotropy and increasing robustness. Results In IHGC datasets, ten, five, and nine bacterial taxa were found to have a causal association with migraine, MA, and MO, respectively, (IVW, all P < 0.05). Genus.Coprococcus3 and genus.Anaerotruncus were validated in FinnGen datasets. Nine, twelve, and seven bacterial entities were identified for migraine, MA, and MO, respectively. The causal association still exists in family.Bifidobacteriaceae and order.Bifidobacteriales for migraine and MO after FDR correction. The heterogeneity and pleiotropy analyses confirmed the robustness of IVW results. Conclusion Our study demonstrates that gut microbiomes may exert causal effects on migraine, MA, and MO. We provide novel evidence for the dysfunction of the gut-brain axis on migraine. Future study is required to verify the relationship between gut microbiome and the risk of migraine and its subtypes and illustrate the underlying mechanism between them

    A genome-wide cross-phenotype meta-analysis of the association of blood pressure with migraine.

    No full text
    Blood pressure (BP) was inconsistently associated with migraine and the mechanisms of BP-lowering medications in migraine prophylaxis are unknown. Leveraging large-scale summary statistics for migraine (Ncases/Ncontrols = 59,674/316,078) and BP (N = 757,601), we find positive genetic correlations of migraine with diastolic BP (DBP, rg = 0.11, P = 3.56 × 10−06) and systolic BP (SBP, rg = 0.06, P = 0.01), but not pulse pressure (PP, rg = −0.01, P = 0.75). Cross-trait meta-analysis reveals 14 shared loci (P ≤ 5 × 10−08), nine of which replicate (P &lt; 0.05) in the UK Biobank. Five shared loci (ITGB5, SMG6, ADRA2B, ANKDD1B, and KIAA0040) are reinforced in gene-level analysis and highlight potential mechanisms involving vascular development, endothelial function and calcium homeostasis. Mendelian randomization reveals stronger instrumental estimates of DBP (OR [95% CI] = 1.20 [1.15–1.25]/10 mmHg; P = 5.57 × 10−25) on migraine than SBP (1.05 [1.03–1.07]/10 mmHg; P = 2.60 × 10−07) and a corresponding opposite effect for PP (0.92 [0.88–0.95]/10 mmHg; P = 3.65 × 10−07). These findings support a critical role of DBP in migraine susceptibility and shared biology underlying BP and migraine
    corecore