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Abstract

Background: Nearly a fifth of the world’s population suffer from migraine headache, yet

risk factors for this disease are poorly characterized.

Methods: To further elucidate these factors, we conducted a genetic correlation analysis us-

ing cross-trait linkage disequilibrium (LD) score regression between migraine headache and

47 traits from the UK Biobank. We then tested for possible causality between these pheno-

types and migraine, using Mendelian randomization. In addition, we attempted replication

of our findings in an independent genome-wide association study (GWAS) when available.

Results: We report multiple phenotypes with genetic correlation (P < 1.06 � 10�3) with

migraine, including heart disease, type 2 diabetes, lipid levels, blood pressure,
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autoimmune and psychiatric phenotypes. In particular, we find evidence that blood pres-

sure directly contributes to migraine and explains a previously suggested causal relation-

ship between calcium and migraine.

Conclusions: This is the largest genetic correlation analysis of migraine headache to

date, both in terms of migraine GWAS sample size and the number of phenotypes tested.

We find that migraine has a shared genetic basis with a large number of traits, indicating

pervasive pleiotropy at migraine-associated loci.

Key words: Genetic correlation, Mendelian randomization, migraine, headache

Introduction

Migraine headache is the most common neurological dis-

order, affecting 15–20% of people over the course of their

lifetimes.1 It is characterized as a severe headache, often

accompanied by visual disturbances, nausea or sensitivity

to stimuli. The presence of these visual disturbances defines

two migraine subtypes: with and without aura. Recent

developments in migraine treatment show promise, but

still have limited efficacy.2 For these reasons, migraine is

the most disabling neurological disease,1,3 motivating the

need for a better understanding of its biology.

Using genetics to improve our knowledge of the disease

is promising, as migraine is approximately 42% heritable.4

A recent genome-wide association study (GWAS) meta-

analysis for migraine combined data from 23andMe Inc.

and the International Migraine Headache Genetics

Consortium, resulting in a combined sample size of 59 674

cases and 316 078 controls. This GWAS identified 38 loci

associated with migraine headache.5 However, the biologi-

cal mechanisms at these loci are not fully understood.

Identification of traits that are genetically correlated

with—or causally related to—migraine could contribute to

the understanding of the disease and suggest directions for

possible therapeutics. Most earlier studies suggesting asso-

ciations between migraine and various biomarkers are ob-

servational, which can suffer from confounding.

Randomized controlled studies could help disentangle cor-

relation from causation, but it is infeasible to screen dozens

of biomarkers at scale. In contrast, human genetics data

can be used to screen a large number of traits, suggesting

phenotypes worthy of additional examination, and poten-

tially identifying the randomized controlled trials that have

the best chance of success.

Using human genetics data, we conducted two types of

analyses to identify potential biomarkers that may play a

role in migraine. The first approach, cross-trait linkage dis-

equilibrium (LD) score regression, uses association statis-

tics from genetic variants across the genome to estimate

the genetic correlation between two traits of interest.6 The

second, Mendelian randomization (MR), compares the ef-

fect of variants strongly associated with an exposure of in-

terest with their association with a disease endpoint of

interest (here, migraine). Under certain assumptions, these

data can be used to estimate a causal effect of the exposure

on the outcome.7

Previous studies have applied these approaches to study

migraine. One study calculated genetic correlation between

migraine and 42 other phenotypes, using data on migraine

occurrence from 53 000 cases and 231 000 controls from

23andMe.8 They found evidence of genetic correlation be-

tween migraine and eight different traits, using cross-trait

LD score regression. In addition, they found evidence of

shared genetic variants influencing migraine and 15 traits

they tested. However, this report did not apply conven-

tional Mendelian randomization techniques for hypothesis

testing. Furthermore, a larger migraine GWAS is now

available, allowing for higher-powered replication of pre-

vious findings.

Therefore, we performed cross-trait LD score regression

and Mendelian randomization (MR) between migraine

and the 47 phenotypes comprising a recent GWAS release

Key Messages

• We replicate previous findings that heart disease, lipid levels, blood pressure, autoimmune and psychiatric pheno-

types are genetically correlated with migraine.

• We report a novel genetic correlation between type 2 diabetes and migraine.

• Diastolic blood pressure is both genetically correlated and potentially causal for migraine.
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of multiple traits in UK Biobank. These traits include car-

diovascular, blood, anthropomorphic, education, repro-

ductive and neuropsychiatric phenotypes with significant

heritability and polygenicity, making them suitable for ge-

netic correlation analyses.9 When possible, we sought to

replicate genetic correlations with a P-value < 1.06 �
10�3, corresponding to a Bonferroni correction to 0.05 for

the number of traits, in an independent GWAS. In addi-

tion, we analysed several additional phenotypes that have

previously been associated with migraine: Alzheimer’s, se-

rum calcium, serum magnesium and serum vitamin D

levels.

Methods

Data

We obtained migraine data from the International

Migraine Headache Genetics Consortium. For migraine-

all, this GWAS is a meta-analysis of 22 different cohorts.5

For migraine with aura and migraine without aura, the

GWAS excluded the 23andMe cohort, leading to a smaller

sample size for the migraine subtypes.

We obtained the UK Biobank GWAS from [https://data.

broadinstitute.org/alkesgroup/UKBB/]. We used the effec-

tive sample sizes (Neff) provided with the data for these

traits.

For our calcium analysis, we could only obtain genome-

wide calcium summary statistics for the discovery analysis

from O’Seaghdha et al.26 However, summary statistics for

the meta-analysis from O’Seaghdha are available for their

lead single nucleotide polymorphisms (SNPs). Therefore,

we used the statistics from the meta-analysis for our cal-

cium MR, and used the discovery analysis statistics for cal-

cium at each of the diastolic blood pressure instrumental

variables in the multivariable MR analysis.

The data from Lee et al. we used excluded 23andMe

due to data sharing issues.20

Mendelian randomization

We performed our Mendelian randomization analyses us-

ing the MR-base R package.48 We generated the instru-

mental variables for each BOLT-LMM GWAS trait using

the clump_data feature with default parameters, and fil-

tered out SNPs with INFO scores below 0.9. For the

remaining GWAS, we obtained instruments using plink’s

clump_data function with a R2 <0.001.51 For the MR-

PRESSO analysis, we used the same instruments as in our

standard MR analysis. We used default parameters, except

we increased the NbDistribution parameter until MR-

PRESSO could compute empirical P-values.14

Cross-trait LD score regression

We performed cross-trait LD score regression using the

linkage disequilibrium score (LDSC) regression package

with default parameters.6 SNP info scores were used, when

available, to filter for high-quality variants, and the y-inter-

cept was left unconstrained.

Results

Widespread genetic correlation with migraine

headache

To identify traits which may share a genetic basis with mi-

graine, we first performed a large-scale, cross-trait genetic

correlation analysis, using the framework of cross-trait LD

score regression.6 Overall, we identified 14 traits from the

UK Biobank (UKB) GWAS with genetic correlations with

migraine, including cardiovascular disease, blood pressure,

cholesterol, blood pressure, neuroticism, asthma, autoim-

mune disease, education, white blood cell count, platelet

count and smoking status (Figure 1; Supplementary Table

1, available as Supplementary data at IJE online). In what

follows, we describe these results in further detail, includ-

ing the results of replication experiments. We also include

results for each trait category for Mendelian randomiza-

tion. We perform these analyses on all subjects with mi-

graine (all subtypes), migraine with aura and migraine

without aura.

Genetic correlation between migraine and

cardiovascular phenotypes

We began by examining migraine and cardiovascular dis-

ease and related traits. First, for the endpoint of cardiovas-

cular disease, we observed a strong genetic correlation

with migraine-all [genetic correlation (rg) ¼ 0.17, P¼8.4

� 10�13, Figure 1; Supplementary Table 1, available as

Supplementary data at IJE online], as well as both subsets

of migraine: with (rg¼0.19, P¼ 4.0 � 10�4) and without

(rg ¼ 0.12, P¼ 3.6 � 10�3) aura. Included in this cardio-

vascular disease grouping definition from the UKB are

multiple phenotypes, including hypertension, stroke, high

cholesterol and ischaemic attack (see the UKB trait defini-

tion given in Supplementary Table 2, available as

Supplementary data at IJE online). The results of

Mendelian randomization analyses using genetic liability

to cardiovascular disease in UKB as the exposure were

mixed between different methods (Supplementary Tables

3, 4 and 5, available as Supplementary data at IJE online).

We next sought to tease apart which phenotypes were

driving this correlation. We first evaluated the genetic cor-

relation between coronary artery disease and migraine,
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using association data from the CARDIOGramþC4D con-

sortium.10 However, the genetic correlation between heart

disease and migraine resulted in a P-value of 0.61

(Supplementary Table 6, available as Supplementary data

at IJE online). We next calculated the genetic correlation

between stroke and migraine, using association data from

the MEGASTROKE consortium11 which included a gen-

eral stroke category in addition to four different subcatego-

ries. Genetic correlation with stroke resulted in a P-value

of 0.25 (Supplementary Table 6, available as

Figure 1 Cross-trait linkage disequilibrium score regression results between migraine and 47 different phenotypes from the UK Biobank. Numbers

correspond to the strength of genetic correlation, and asterisks represent P-values of these associations. BMI, body mass index; FEV1, forced expira-

tory volume in 1 s; FVC, forced vital capacity; ENT, ear, nose and throat disorders.
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Supplementary data at IJE online). These analyses suggest

that cardiovascular-related traits, like blood pressure or

lipids levels, rather than the specific disease endpoints,

may be driving the genetic correlation observed in the UKB

analysis.

We then turned to evaluate genetic correlation between

measurements of blood pressure and migraine. We found a

compelling genetic correlation between diastolic blood pres-

sure and migraine (rg¼0.1, P¼ 5.4 � 10�5, Figure 1;

Supplementary Table 1, available as Supplementary data at

IJE online) with nominal significance in migraine with and

without aura. We attempted replication of the genetic corre-

lation finding in a meta-analysis of GWAS of blood pres-

sure, which included individuals from the Million Veterans

Project and the International Consortium of Blood Pressure

(ICBP).12 We observed replication with diastolic blood pres-

sure (rg¼0.11, P¼ 1.90 � 10�6), and a weaker effect with

systolic blood pressure (rg ¼ 0.063, P¼ 0.011), supporting

the hypothesis that blood pressure and migraine share a ge-

netic basis in common (Supplementary Table 7, available as

Supplementary data at IJE online).

Next, we applied Mendelian randomization to test the

hypothesis that genetic elevation in blood pressure

increases susceptibility to migraine. We observed that one

standard deviation (1-SD) genetic elevation in diastolic

blood pressure increased risk to migraine-all by 14% [odds

ratio (OR)¼1.14, 95% confidence interval (CI)¼ 1.07–

1.21, P¼ 8.9 � 10�5], and a 1-SD genetic elevation in sys-

tolic blood pressure increased risk to migraine-all by 9%

(OR¼ 1.09, CI¼ 1.01–1.16, P¼0.018) (Supplementary

Table 3, available as Supplementary data at IJE online).

Supporting this observation are all five Mendelian random-

ization methods estimating a positive effect estimate for

both diastolic and systolic blood pressure on migraine,

with the exception of one: weighted mode with systolic

blood pressure (OR¼ 0.98, P ¼ 0.79). We did not attempt

replication of the Mendelian randomization effect, because

the considerable cohort overlap between the ICBP and mi-

graine cohorts can bias Mendelian randomization effect

estimates.13,14 We next used a Steiger directionality test

and observed that the correct direction of effect was indeed

genetically determined diastolic blood pressure affecting

migraine (Supplementary Table 7, available as

Supplementary data at IJE online).15

We subsequently turned to evaluating a role of plasma

lipid levels in migraine. We observed strong genetic corre-

lation between high cholesterol and migraine (all) and mi-

graine with aura in the UK Biobank data (migraine-all: rg

¼ 0.16, P¼ 2.0 � 10�6; with-aura: rg ¼ 0.30, P¼ 1.3 �
10�5, Figure 1; Supplementary Table 1, available as

Supplementary data at IJE online). We then tested for rep-

lication in an independent lipid GWAS meta-analysis of

European individuals from the Millions Veterans Project

and the Global Lipid Genetics Consortium.12 All four lipid

traits [high-density lipoprotein (HDL) cholesterol, low-

density lipoprotein (LDL) cholesterol, total cholesterol and

triglyceride levels] reached our significance threshold, with

triglycerides being the strongest (rg ¼ 0.11, P¼7.80 �
10�6, Figure 2; Supplementary Table 8, available as

Supplementary data at IJE online). However, none of the

Mendelian randomization experiments for the high choles-

terol phenotype from UK Biobank or any of the four lipid

phenotypes from the lipid GWAS meta-analysis had

P-value less than 0.05 (Supplementary Table 8, available

as Supplementary data at IJE online).

Finally, we looked for evidence of genetic correlation be-

tween adiposity traits and migraine, as many of these traits

also relate to cardiovascular risk. In the UK Biobank data,

we did not observe convincing genetic correlation between

body mass index and migraine, and only a weak correlation

with waist-hip ratio adjusted for body mass index (BMI)

(Figure 1; Supplementary Table 1, available as

Supplementary data at IJE online). Mendelian randomization

results indicated that genetic elevation of these traits is not

obviously associated with migraine (Supplementary Tables 3,

4 and 5, available as Supplementary data at IJE online).

Genetic correlation between migraine and type-2

diabetes

We next looked for evidence of a shared genetic basis be-

tween type-2 diabetes (T2D) in the UKB and migraine. LD

Figure 2 Genetic correlation of lipid traits with migraine headache and

migraine subtypes using cross-trait linkage disequilibrium score regres-

sion. Error bars represent the 95% confidence interval. Lipid genome-

wide association study is from Klarin (2018). HDL, high-density lipopro-

tein; LDL, low-density lipoprotein.
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score regression suggests a positive genetic correlation be-

tween T2D and migraine (rg ¼ 0.09, P¼ 0.004) (Figure 1;

Supplementary Table 1, available as Supplementary data

at IJE online). Replication using a recently reported large-

scale genetic association study for T2D, which included

UKB individuals, resulted in an even stronger correlation

(rg¼0.11, P¼8.4 � 10�5, Supplementary Table 1, avail-

able as Supplementary data at IJE online).16 Mendelian

randomization did not provide evidence for genetic eleva-

tion in T2D risk increasing risk of migraine

(Supplementary Tables 3, 4 and 5, available as

Supplementary data at IJE online).

Genetic correlation between migraine and

autoimmune-related and respiratory traits

We next explored the genetic relationship between

autoimmune-related traits and migraine. There was a strong

genetic correlation with an autoimmune phenotype category

which encompasses a wide set of proposed autoimmune phe-

notypes in the UKB GWAS (rg¼0.18, P¼2.7 � 10�7)

(Supplementary Tables 1 and 2, available as Supplementary

data at IJE online). In addition, a more specific set of autoim-

mune traits, denoted as ‘sure-autoimmune diseases’ (which

included but was not limited to: type 1 diabetes, multiple

sclerosis, lupus, Sjogren’s disease, coeliac disease and rheu-

matoid arthritis) were associated (rg¼0.13, P¼ 0.012).

Several additional diseases thought to have an autoimmune

component also had genetic correlations with migraine, in-

cluding eczema (rg ¼ 0.11, P¼ 6.9 � 10�5), respiratory and

ear-nose-throat disease (rg¼0.15, P¼ 4.6 � 10�6) and

asthma (rg ¼ 0.14, P¼ 1.8 � 10�5, Figure 1; Supplementary

Table 1, available as Supplementary data at IJE online).

We then attempted replication of these genetic correla-

tions. Using two different asthma GWAS, asthma was as-

sociated with migraine with a stronger P-value (rg ¼ 0.17

and 0.11, P¼ 2.9 � 10�7 and 0.01) (Supplementary Table

9, available as Supplementary data at IJE online).17,18 We

next attempted replication of the eczema association.19

The direction of effect remained consistent but the effect

was less significant (rg ¼ 0.11, P¼ 0.07) (Supplementary

Table 9, available as Supplementary data at IJE online).

Mendelian randomization analyses were not suggestive for

any of these trait categories (Supplementary Tables 3, 4

and 5, available as Supplementary data at IJE online).

Genetic correlation between migraine and

psychiatric and educational attainment traits

Next, we measured the genetic correlation between educa-

tion level and migraine. We observed an inverse genetic

correlation between migraine and both years of education

(rg ¼ �0.09, P¼2.0 � 10�5) and having a college or uni-

versity degree (rg ¼ �0.12, P¼ 1.1 � 10�9) (Figure 1;

Supplementary Table 1, available as Supplementary data

at IJE online). Replication of the genetic correlation in the

largest GWAS for educational attainment to date was

strong (rg ¼ �0.11, P¼ 1.9 � 10�8) (Supplementary Table

10, available as Supplementary data at IJE online).20 We

next tested for a genetic association between cognitive per-

formance and migraine using LD score regression but did

not observe association (Supplementary Table 10, avail-

able as Supplementary data at IJE online).20 We note that

a lack of genetic correlation with cognitive performance

could be due to a difference in discovery power because of

sample size (n¼ 766 345 for educational attainment, ver-

sus n¼ 257 828 for cognitive performance). Although

Mendelian randomization for college education and years

of education using the inverse variance weighted method

was positive, neither of these results was robust in subse-

quent sensitivity analyses (Supplementary Table 3, avail-

able as Supplementary data at IJE online).

We next examined the genetic correlation between psy-

chiatric traits and migraine. There was a strong, positive

genetic correlation between all three migraine types and

neuroticism both in UKB (rg ¼ 0.26, P¼5.8 � 10�27 with

migraine-all, Figure 1) and in a higher-powered GWAS,

which includes a UKB cohort (rg ¼ 0.26, P¼ 6.5 �
10�28).21 We saw genetic correlation among the two neu-

roticism subtypes as well: depressed affect (rg ¼ 0.30,

P¼ 1.4 � 10�28) and worry (rg ¼ 0.21, P¼ 4.0 � 10�18)

(Supplementary Table 11, available as Supplementary data

at IJE online).22 There was also genetic correlation be-

tween migraine and general depression (rg ¼ 0.30, P¼2.7

� 10�22) (Supplementary Table 11, available as

Supplementary data at IJE online).21 In the UKB,

Mendelian randomization demonstrated that a genetic

elevation in neuroticism was associated with an increased

risk of migraine, using most MR methodological

approaches (OR¼ 1.09, CI¼ 1.05–1.13, P¼ 9.1 � 10�6)

(Supplementary Table 3, available as Supplementary data

at IJE online). In addition, the MR-PRESSO method did

not detect instruments with heterogeneity of effects with P-

value< 0.05 (Supplementary Table 12, available as

Supplementary data at IJE online). We were unable to at-

tempt to replicate this MR effect using the higher-powered

GWAS of Nagel et al.22 as effect sizes and standard errors

were not available. Instead, we performed a Mendelian

randomization using the results of Okbay et al., which has

a smaller sample size. We found that the effect did not rep-

licate, which may not be surprising given that there were

only 12 genome-wide significance associations

(Supplementary Table 12, available as Supplementary data

at IJE online).
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Genetic correlation between migraine and blood

traits

In the UK Biobank GWAS set, we observed a genetic correla-

tion of migraine-all with blood platelet count (rg ¼ 0.08,

P¼ 3 � 10�4) and white blood cell count (rg¼ 0.09, P¼5.0

� 10�5) (Figure 1; Supplementary Table 1, available as

Supplementary data at IJE online). We next conducted an ex-

ploratory analysis to determine if there were additional blood

platelet traits correlated with migraine, using results from the

combined INTERVAL and UKB cohorts.23 We found 10

blood traits overall, including platelet count and white blood

cell count, with nominal evidence of correlation (P<0.05,

out of a total of 36 different traits) (Supplementary Figure 1,

Supplementary Table 13, available as Supplementary data at

IJE online). Mendelian randomization analyses between

blood traits in UKB and migraine did not return convincing

support for causal effects (Supplementary Table 3, available

as Supplementary data at IJE online).

Hypothesis testing of previously associated

phenotypes

We next tested for association between migraine and pheno-

types not present in the set of UKB GWAS we used. We first

tested for association with Alzheimer’s disease, using a

GWAS of 455 258 individuals.24 We found a genetic corre-

lation between migraine and migraine with aura and

Alzheimer’s (rg ¼ 0.18, P¼0.014 for migraine-all and rg ¼
0.3, P¼ 0.02 for migraine with aura) (Supplementary Table

14, available as Supplementary data at IJE online).

However, a follow-up of this analysis, using an Alzheimer’s

GWAS composed of 94 437 individuals, did not support

this finding (rg ¼ �0.034, P¼ 0.59 for migraine-all and rg ¼
�0.039, P¼ 0.75 for migraine with aura) (Supplementary

Table 14, available as Supplementary data at IJE online).25

We next checked for a genetic correlation between mi-

graine and biomarkers which have been previously hypoth-

esized to be associated with migraine headache. Indeed, we

found an association between serum calcium and mi-

graine-all (rg ¼ 0.13, P¼0.017) using cross-trait LD score

regression, and a directionally consistent effect of calcium

on migraine using Mendelian randomization (OR¼1.51

P¼ 0.07) (Supplementary Table 15, available as

Supplementary data at IJE online).26 We found no associa-

tion between magnesium and migraine, using Mendelian

randomization (Supplementary Table 16, available as

Supplementary data at IJE online),27 and were unable to

perform cross-trait LD score regression with magnesium

because genome-wide summary data are not available. In

addition, we found no genetic correlation between serum

vitamin D levels and migraine (Supplementary Table 17,

available as Supplementary data at IJE online).28

Multivariable analysis of vascular traits

Our analyses find evidence for a potentially causal rela-

tionship between migraine and diastolic blood pressure,

and provide modest replication of a calcium association

that we previously reported.29 This leads to the question of

whether these putative causal relationships are indepen-

dent of one another. To answer this question, we first

tested for genetic correlation between calcium and diastolic

blood pressure using two different blood pressure GWAS:

the UKB results and a combined meta-analysis comprising

over 1 million individuals.12 We found a genetic correla-

tion with P-values 0.003 and 0.0011 between diastolic and

calcium levels using the two blood pressure GWAS

(Supplementary Table 18, available as Supplementary data

at IJE online), strengthening the hypothesis that blood

pressure and calcium may not have independent causal

effects on migraine.

To more thoroughly test this hypothesis, we performed

multivariable MR, which considers the effects of several

different exposures jointly. When fitting each exposure to

the residual of the outcome adjusted for the other expo-

sure, the effect of serum calcium levels on migraine-all was

attenuated (odds ratio of 1.29 to 1.16), whereas the effect

of diastolic blood pressure on migraine-all remained more

similar (odds ratio 1.16 to 1.10) after inclusion of calcium

in the model (Figure 3; Supplementary Table 18, available

as Supplementary data at IJE online). We next tested

whether diastolic blood pressure and calcium have a clear

causal relationship. Mendelian randomization analyses be-

tween serum calcium and diastolic blood pressure, or the

reciprocal diastolic blood pressure on serum calcium, were

inconclusive (Supplementary Table 18, available as

Supplementary data at IJE online). Heterogeneity between

instruments, potentially driven by pleiotropy, could bias

these results. To test for this, we performed an MR-

Figure 3 Effect of diastolic blood pressure and calcium on migraine-all.

‘Single trait’ is the estimated effect of the given biomarker on migraine-

all using Mendelian randomization of only the given biomarker. “Multi-

trait” is the estimated effect of the biomarker on migraine-all using the

residual of the outcome after adjustment for the other biomarker. Error

bars represent the 95% confidence interval.
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PRESSO analysis14 which removes instruments demon-

strating horizontal pleiotropy, and found that the diastolic

blood pressure effect on migraine remained (P¼ 0.02)

(Supplementary Table 18, available as Supplementary data

at IJE online). No heterogeneity was detected between the

calcium instruments.

Discussion

Here, we report genome-wide correlations between mi-

graine headache and a wide range of traits. We suspect

that the sizeable number of correlations passing a conser-

vative Bonferroni correction could be a result of the large

sample size of both the UK Biobank and migraine GWAS,

combined with the pleiotropic nature of variants contribut-

ing to migraine susceptibility. Our large number of

reported correlations is consistent with previous studies of

genetic correlation which include migraine.8,30 We note

that although some of these correlations were only present

for migraine-all or one migraine subtype, it is difficult to

make claims about heterogeneity of effects between sub-

types, given the reduced sample sizes of the subtype

cohorts.

It is important to note that many of the phenotypes in

the UK Biobank are influenced by the tendency of individu-

als to report a phenotype to a doctor. For instance, the ob-

served genetic association between neuroticism and

migraine could be due to neuroticism increasing the likeli-

hood of reporting having had migraine to a doctor. In ad-

dition, we stress that two-sample Mendelian

randomization, as used here, does not test for a causal ef-

fect of a disease on an outcome, but instead tests for a

causal effect between genetic liability for the disease and

an outcome.

We find pervasive evidence of genetic correlation be-

tween migraine and other brain-related traits. We report a

novel genetic correlation between Alzheimer’s disease and

migraine; however, this correlation did not successfully

replicate when using a smaller GWAS. The lack of replica-

tion could be due to several factors, including the smaller

sample size decreasing power, or the difference in case cri-

teria: the larger GWAS of Jensen et al. included both clini-

cally diagnosed Alzheimer’s patients and Alzheimer’s-by-

proxy cases, which was based on parental diagnoses. The

GWAS of Kunkle et al. only used clinically diagnosed

cases. Consistent with our results, previous studies suggest

an inverse correlation between educational attainment and

migraine.8,31–33 We also find a positive genetic correlation

between neuroticism and depression and migraine, match-

ing earlier reports.34–37.

We find no evidence for a relationship between mi-

graine and magnesium or vitamin D. Some studies have

found support of these nutrients as a migraine preventa-

tive, but the evidence is limited.38–40 However, our analysis

may lack statistical power: there were only eight indepen-

dent genetic variants for magnesium and 10 for vitamin D.

Currently, the role of blood platelet traits in migraine is

not well understood; however, our findings corroborate

those of Pickrell et al., and suggest a shared genetic basis.8

We find evidence of genetic correlation between mi-

graine and only some of the tested cardiometabolic traits,

which is perhaps surprising given previous genetic and epi-

demiological observations. Pickrell et al. showed a shared

genetic basis between heart disease and migraine, using

data from the CARDIoGRAMþC4D consortium using a

conjunction false-discovery rate (FDR) approach, which

measures how much of an excess of significantly associated

variants in one trait can be accounted for due to associa-

tions with a second trait.8 Observational studies have also

found a correlation between the occurrence of these dis-

eases.41 However, consistent with what we report here,

Pickrell et al. found no genetic correlation using cross-trait

LD score regression on their migraine dataset. One possi-

ble explanation for the discordance between these cross-

trait LD score results and other types of evidence could be

that heart disease is not pleiotropic enough for a high-

powered genetic correlation analysis. An additional expla-

nation is that coronary artery disease and migraine share

only a subset of causal single nucleotide polymorphisms

(SNPs), diluting the genetic correlation signal. Consistent

with our results, lipid levels have been previously associ-

ated with migraine severity.42,43 We also observed a novel

positive genetic correlation with type 2 diabetes. Previous

observational studies have found an inconsistent correla-

tion between migraine and type 2 diabetes, 44–46 with some

evidence suggesting there may be an age-dependent ef-

fect.44 Our genetic correlation analysis provides evidence

that there may be a shared genetic basis between these

traits, which may be obscured in observational studies by

environmental or pharmacological factors.

In addition, we report both a novel positive genetic cor-

relation and a potential causative relationship between

blood pressure and migraine. This contrasts with a recent

study which found an inverse relationship between blood

pressure and migraine and tension headache, but corrobo-

rates the observation that beta-blockers which lower blood

pressure can decrease migraine attack frequency.47,48

However, to our knowledge, no large-scale observational

study of blood pressure and migraine has been performed.

Our multivariable analysis does not reveal a clear causal

order between calcium, blood pressure and migraine, but

suggests that calcium and blood pressure do not have

strictly independent effects on migraine. However, these

results do suggest that neurovascular processes associated
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with increased blood pressure may underlie migraine head-

ache,49 supporting a recent study which found that mi-

graine disease heritability is enriched in genes specifically

expressed in cardiovascular tissues.50

These findings reveal potential shared biology between

migraine and multiple other phenotypes. This motivates

further work to reveal the genetic and functional basis of

these observations, either through multi-trait association

studies or through functional follow-up.
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Lehtimäki36, Antti-Pekka Sarin9, Juho Wedenoja37, David A

Hinds19, Julie E Buring21,38, Markus Schrks39, Paul M

Ridker21,38, Maria Gudlaug Hrafnsdottir40, Hreinn

Stefansson22, Susan M Ring23, Jouke-Jan Hottenga24,

Brenda WJH Penninx41, Markus Färkkilä26, Ville Artto26,
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Nielsen55,57, Minna Männikkö32, Evelin Mihailov10, Lili
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