2,426 research outputs found
Triggering on hard probes in heavy ion collisions with CMS
We present a study of the CMS trigger system in heavy-ion collisions.
Concentrating on two physics channels, dimuons from decays of quarkonia and
single jets, we evaluate a possible trigger strategy for Pb+Pb running that
relies on event selection solely in the High-Level Trigger (HLT). The study is
based on measurements of the timing performance of the offline algorithms and
event-size distributions using full simulations. Using a trigger simulation
chain, we compare the physics reach for the jet and dimuon channels using
online selection in the HLT to minimum bias running. The results demonstrate
the crucial role the HLT will play for CMS heavy-ion physics.Comment: 4 pages, 4 fugures, contribution to QM'06 conferenc
Medium information from anisotropic flow and jet quenching in relativistic heavy ion collisions
Within a multiphase transport (AMPT) model, where the initial conditions are
obtained from the recently updated HIJING 2.0 model, the recent anisotropic
flow and suppression data for charged hadrons in Pb+Pb collisions at the LHC
center of mass energy of 2.76 TeV are explored to constrain the properties of
the partonic medium formed. In contrast to RHIC, the measured centrality
dependence of charged hadron multiplicity dN_ch/deta at LHC provides severe
constraint to the largely uncertain gluon shadowing parameter s_g. We find
final-state parton scatterings reduce considerably hadron yield at midrapidity
and enforces a smaller s_g to be consistent with dN_ch/deta data at LHC. With
the parton shadowing so constrained, hadron production and flow over a wide
transverse momenta range are investigated in AMPT. The model calculations for
the elliptic and triangular flow are found to be in excellent agreement with
the RHIC data, and predictions for the flow coefficients v_n(p_T, cent) at LHC
are given. The magnitude and pattern of suppression of the hadrons in AMPT are
found consistent with the measurements at RHIC. However, the suppression is
distinctly overpredicted in Pb+Pb collisions at the LHC energy. Reduction of
the QCD coupling constant alpha_s by ~30% in the higher temperature plasma
formed at LHC reproduces the measured hadron suppression.Comment: Talk given by Subrata Pal at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond
Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that will allow particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official reconstruction chains. Our hope is that this new technique will improve physics analysis when used in combination with state-of-the-art algorithms in high-luminosity hadron collider environments
RooStatsCms: a tool for analyses modelling, combination and statistical studies
The RooStatsCms (RSC) software framework allows analysis modelling and
combination, statistical studies together with the access to sophisticated
graphics routines for results visualisation. The goal of the project is to
complement the existing analyses by means of their combination and accurate
statistical studies.Comment: Proceedings of the 11th Topical Seminar on Innovative Particle and
Radiation Detectors. 4 pages and 5 figure
Measurement of inclusive W and Z cross sections in pp collisions at √s = 7 TeV
Journal of High Energy Physics 2011.1 (2011): 080 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Measurements of inclusive W and Z boson production cross sections in pp collisions at √s = 7 TeV are presented, based on 2.9 pb-1 of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give σ(pp → WX) × B(W → lʋ) = 9.95 ± 0.07 (stat.) ± 0.28 (syst.) ± 1.09 (lumi.) nb and σ(pp → ZX) × B(Z → l +l-) = 0.931 ± 0.026 (stat.) ± 0.023 (syst.) ± 0.102 (lumi.) nb, where ℓ stands for either e or μ. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reporte
First experience in operating the population of the condition databases for the CMS experiment
Reliable population of the condition databases is critical for the correct
operation of the online selection as well as of the offline reconstruction and
analysis of data. We will describe here the system put in place in the CMS
experiment to populate the database and make condition data promptly available
both online for the high-level trigger and offline for reconstruction. The
system, designed for high flexibility to cope with very different data sources,
uses POOL-ORA technology in order to store data in an object format that best
matches the object oriented paradigm for \texttt{C++} programming language used
in the CMS offline software. In order to ensure consistency among the various
subdetectors, a dedicated package, PopCon (Populator of Condition Objects), is
used to store data online. The data are then automatically streamed to the
offline database hence immediately accessible offline worldwide. This mechanism
was intensively used during 2008 in the test-runs with cosmic rays. The
experience of this first months of operation will be discussed in detail.Comment: 15 pages, submitter to JOP, CHEP0
Commissioning and Performance of the CMS Pixel Tracker with Cosmic Ray Muons
The pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns
Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at s=13TeV
Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at s=13TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137fb−1. The search is performed in the fully leptonic final state ZZ→ℓℓℓ′ℓ′, where ℓ,ℓ′=e,μ. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is σEW(pp→ZZjj→ℓℓℓ′ℓ′jj)=0.33−0.10+0.11(stat)−0.03+0.04(syst)fb in the most inclusive volume, in agreement with the standard model prediction of 0.275±0.021fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9
- …
