19 research outputs found

    RooStatsCms: a tool for analyses modelling, combination and statistical studies

    Full text link
    The RooStatsCms (RSC) software framework allows analysis modelling and combination, statistical studies together with the access to sophisticated graphics routines for results visualisation. The goal of the project is to complement the existing analyses by means of their combination and accurate statistical studies.Comment: Proceedings of the 11th Topical Seminar on Innovative Particle and Radiation Detectors. 4 pages and 5 figure

    New ATLAS Events from First 2011 Collisions with stable beams.

    No full text
    A collision event seen in the ATLAS Experiment from the first 2011 fill with stable beams, which were declared at 18:04

    Some Interesting Events from Lead-Lead Collisions in ATLAS at the LHC (individual captions in abstract)

    No full text
    Image Captions CERN-EX-1011310 01 -- Event display of a highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, recorded by ATLAS in LHC lead-lead collisions. CERN-EX-1011310 02 -- Event display of a highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, recorded by ATLAS in LHC lead-lead collisions. CERN-EX-1011310 03 -- Event display of a highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, recorded by ATLAS in LHC lead-lead collisions. CERN-EX-1011310 04 -- LHC lead-lead collisions recorded by ATLAS with a candidate Z to μ+μ- decay. The two muons shown in purple are the candidates to originate from the Z decay. The transverse momenta of these two muons are 44 and 45 GeV, and the invariant mass of the dimuon system is 93 GeV. CERN-EX-1011310 05 -- LHC lead-lead collisions recorded by ATLAS with a candidate Z to μ+μ- decay. The two muons shown in red are the candidates to originate from the Z decay. The transverse momenta of these two muons are 44 and 45 GeV, and the invariant mass of the dimuon system is 93 GeV. CERN-EX-1011310 06 -- Display of another event with two highly asymmetric jets, with one jet with ET > 100 GeV, recorded by ATLAS in LHC lead-lead collisions. <br /

    The Voyage of Discovery of the Higgs Boson at the LHC

    No full text
    The journey in search for the Higgs boson started in earnest with the discovery of the W and Z bosons. The LHC accelerator, the ATLAS and CMS experiments were conceived in the late 1980s and early 1990s, and it took two decades to turn the concepts to reality. Novel and innovative technologies needed to be developed and turned into superbly functioning engines for providing proton-proton collisions in the case of the LHC and physics results in the case of the experiments. The most significant discovery so far to emerge from the LHC project is that of a heavy scalar boson, announced on 4th July 2012. The data collected so far point strongly to its properties as those expected for the Higgs boson associated with the Brout-Englert-Higgs mechanism
    corecore