116 research outputs found

    The Transportation Industry and Excessive Competition

    Get PDF

    Debate on the Merits of Transportation Regulation

    Get PDF

    Large Effects from Small Exposures. I. Mechanisms for Endocrine-Disrupting Chemicals with Estrogenic Activity

    Get PDF
    Reproduced with permission from Environmental Health Perspectives. doi:10.1289/ehp.5494Information concerning the fundamental mechanisms of action of both natural and environmental hormones, combined with information concerning endogenous hormone concentrations, reveals how endocrine-disrupting chemicals with estrogenic activity (EEDCs) can be active at concentrations far below those currently being tested in toxicological studies. Using only very high doses in toxicological studies of EEDCs thus can dramatically underestimate bioactivity. Specifically: a) The hormonal action mechanisms and the physiology of delivery of EEDCs predict with accuracy the low-dose ranges of biological activity, which have been missed by traditional toxicological testing. b) Toxicology assumes that it is valid to extrapolate linearly from high doses over a very wide dose range to predict responses at doses within the physiological range of receptor occupancy for an EEDC; however, because receptor-mediated responses saturate, this assumption is invalid. c) Furthermore, receptor-mediated responses can first increase and then decrease as dose increases, contradicting the assumption that dose-response relationships are monotonic. d) Exogenous estrogens modulate a system that is physiologically active and thus is already above threshold, contradicting the traditional toxicological assumption of thresholds for endocrine responses to EEDCs. These four fundamental issues are problematic for risk assessment methods used by regulatory agencies, because they challenge the traditional use of extrapolation from high-dose testing to predict responses at the much lower environmentally relevant doses.Support during the preparation of this manuscript was provided by the W. Alton Jones Foundation to K.A.T, as well as by grants from the National Institutes of Health (NIH) (CA50354) and the University of Missouri (VMFC0018) to W.V.W and NIH (ES08293 and ES11283), U.S. Environmental Protection Agency (U914991), and University of Missouri Research Board to F.v.S

    The Association of Arsenic Exposure and Metabolism With Type 1 and Type 2 Diabetes in Youth: The SEARCH Case-Control Study

    Get PDF
    Little is known about arsenic and diabetes in youth. We examined the association of arsenic with type 1 and type 2 diabetes in the SEARCH for Diabetes in Youth Case-Control (SEARCH-CC) study. Because one-carbon metabolism can influence arsenic metabolism, we also evaluated the potential interaction of folate and vitamin B12 with arsenic metabolism on the odds of diabetes

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore