51 research outputs found

    Fluorescent Plasmodium berghei sporozoites and pre-erythrocytic stages: a new tool to study mosquito and mammalian host interactions with malaria parasites.

    No full text
    To track malaria parasites for biological studies within the mosquito and mammalian hosts, we constructed a stably transformed clonal line of Plasmodium berghei, PbFluspo, in which sporogonic and pre-erythrocytic liver-stage parasites are autonomously fluorescent. A cassette containing the structural gene for the FACS-adapted green fluorescent protein mutant 2 (GFPmut2), expressed from the 5' and 3' flanking sequences of the circumsporozoite (CS) protein gene, was integrated and expressed at the endogenous CS locus. Recombinant parasites, which bear a wild-type copy of CS, generated highly fluorescent oocysts and sporozoites that invaded mosquito salivary glands and were transmitted normally to rodent hosts. The parasites infected cultured hepatocytes in vitro, where they developed into fluorescent pre-erythrocytic forms. Mammalian cells infected by these parasites can be separated from non-infected cells by fluorescence activated cell sorter (FACS) analysis. These fluorescent insect and mammalian stages of P. berghei should be useful for phenotypic studies in their respective hosts, as well as for identification of new genes expressed in these parasite stages

    Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival

    Get PDF
    Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): &lt;i&gt;N&lt;/i&gt;-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that &lt;i&gt;LplA1&lt;/i&gt; plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite &lt;i&gt;P.falciparum&lt;/i&gt; consistently were unsuccessful while in the rodent malaria model parasite &lt;i&gt;P. berghei&lt;/i&gt; the &lt;i&gt;LplA1&lt;/i&gt; gene locus was targeted by knock-in and knockout constructs. However, the &lt;i&gt;LplA1&lt;/i&gt; &lt;sup&gt;(-)&lt;/sup&gt; mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt;. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite

    Association between Knops blood group polymorphisms and susceptibility to malaria in an endemic area of the Brazilian Amazon

    Get PDF
    Complement receptor 1 (CR1) gene polymorphisms that are associated with Knops blood group antigens may influence the binding of Plasmodium parasites to erythrocytes, thereby affecting susceptibility to malaria. The aim of this study was to evaluate the genotype and allele and haplotype frequencies of single-nucleotide polymorphisms (SNPs) of Knops blood group antigens and examine their association with susceptibility to malaria in an endemic area of Brazil. One hundred and twenty-six individuals from the Brazilian Amazon were studied. The CR1-genomic fragment was amplified by PCR and six SNPs and haplotypes were identified after DNA sequence analysis. Allele and haplotype frequencies revealed that the Knb allele and H8 haplotype were possibly associated with susceptibility to Plasmodium falciparum. The odds ratios were reasonably high, suggesting a potentially important association between two Knops blood antigens (Knb and KAM+) that confer susceptibility to P. falciparum in individuals from the Brazilian Amazon

    Depletion of Plasmodium berghei Plasmoredoxin Reveals a Non-Essential Role for Life Cycle Progression of the Malaria Parasite

    Get PDF
    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies

    A G358S mutation in the Plasmodium falciparum Na<sup>+</sup> pump PfATP4 confers clinically-relevant resistance to cipargamin

    Get PDF
    Diverse compounds target the Plasmodium falciparum Na(+) pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4(G358S) parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na(+) regulation. The G358S mutation reduces the affinity of PfATP4 for Na(+) and is associated with an increase in the parasite’s resting cytosolic [Na(+)]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4(G358S) parasites, and that their combination with unrelated antimalarials may mitigate against resistance development

    No Evidence that Knops Blood Group Polymorphisms Affect Complement Receptor 1 Clustering on Erythrocytes

    Get PDF
    Clustering of Complement Receptor 1 (CR1) in the erythrocyte membrane is important for immune-complex transfer and clearance. CR1 contains the Knops blood group antigens, including the antithetical pairs Swain-Langley 1 and 2 (Sl1 and Sl2) and McCoy a and b (McCa and McCb), whose functional effects are unknown. We tested the hypothesis that the Sl and McC polymorphisms might influence CR1 clustering on erythrocyte membranes. Blood samples from 125 healthy Kenyan children were analysed by immunofluorescence and confocal microscopy to determine CR1 cluster number and volume. In agreement with previous reports, CR1 cluster number and volume were positively associated with CR1 copy number (mean number of CR1 molecules per erythrocyte). Individuals with the McCb/McCb genotype had more clusters per cell than McCa/McCa individuals. However, this association was lost when the strong effect of CR1 copy number was included in the model. No association was observed between Sl genotype, sickle cell genotype, α+thalassaemia genotype, gender or age and CR1 cluster number or volume. Therefore, after correction for CR1 copy number, the Sl and McCoy polymorphisms did not influence erythrocyte CR1 clustering, and the effects of the Knops polymorphisms on CR1 function remains unknown

    Red blood cell complement receptor one level varies with Knops blood group, α(+)thalassaemia and age among Kenyan children

    Get PDF
    Both the invasion of red blood cells (RBCs) by Plasmodium falciparum parasites and the sequestration of parasite-infected RBCs in the microvasculature are mediated in part by complement receptor one (CR1). RBC surface CR1 level can vary between individuals by more than 20-fold and may be associated with the risk of severe malaria. The factors that influence RBC CR1 level variation are poorly understood, particularly in African populations. We studied 3535 child residents of a malaria-endemic region of coastal Kenya and report, for the first time, that the CR1 Knops blood group alleles Sl2 and McC(b), and homozygous HbSS are positively associated with RBC CR1 level. Sickle cell trait and ABO blood group did not influence RBC CR1 level. We also confirm the previous observation that α(+)thalassaemia is associated with reduced RBC CR1 level, possibly due to small RBC volume, and that age-related changes in RBC CR1 expression occur throughout childhood. RBC CR1 level in malaria-endemic African populations is a complex phenotype influenced by multiple factors that should be taken into account in the design and interpretation of future studies on CR1 and malaria susceptibility

    An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples.

    Get PDF
    MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination

    Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples

    Get PDF
    We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website
    • …
    corecore