26 research outputs found

    Application of BaY2F8:Er3+,Yb3+ and Mg8Ge2O11F2:Mn4+ in improving the lighting quality of phosphor-in-glass based white light-emitting diodes with the dual-convex design

    Get PDF
    Although the luminous of the remote phosphor structure tends to be better than that of the in-cup or conformal phosphor structures, the poor light quality prevents this lighting method from being widely used. It is recognized through experiments that the two-layer remote phosphorus structure should be used to improve color rendering index (CRI) and color quality ratio (CQS) for WLEDs. In the experiments, WLED structures containing green BaY2F8:Er3+,Yb3+ or red Mg8Ge2O11F2:Mn4+ phosphor on the yellow YAG:Ce3+ phosphor were performed at 8500 K.. After that, Mg8Ge2O11F2:Mn4+ and BaY2F8:Er3+,Yb3+ concentrations in each WLED structure is adjusted until chromatic performance reached the finest quality. As a result, Mg8Ge2O11F2:Mn4+is proved to bring great benefits to the increase of CRI and CQS. Specifically, the greater the concentration of Mg8Ge2O11F2:Mn4+, the better CRI and CQS because of the additional red-light material from this phosphor. The other phosphor material, green BaY2F8:Er3+,Yb3+ phosphor, is beneficial for the expansion of luminous flux. However, if the concentration of Mg8Ge2O11F2:Mn4+ or BaY2F8:Er3+,Yb3+ is over the limit, the decrease in lumen output and chromatic quality will occur. While doing the experiment, Mie-scattering theory and the Beer’s law are great tools to verify the accuracy of results. The results of this article can serve the purpose of improving WLEDs fabrication to produce higher quality product

    Integrating SiO2 nanoparticles to achieve color uniformity and luminous efficiency enhancement for white light emitting diodes

    Get PDF
    A phosphor structure with SiO2 nanoparticles is proposed to achieve the enhancement in the correlated color temperature (CCT) homogeneity and the luminescence performance for white light-emitting diodes (WLEDs). As SiO2 is integrated into the phosphorus compound, the scattering effect of this material contributes to better blue-light utilization. Thus, this innovative packaging design results in a significant increased lumen efficiency, more than 12%, in comparison with that of conventional dispensing ones. Meanwhile, the angular CCT deviation also decreases considerably, from 522 K to 7 K, between the angles of -70 and 700. Moreover, this reduction leads to the diminishment of yellow ring phenomenon effect. In addition, the measurement of haze demonstrates that there is a strong scattering in the visible spectrum when SiO2 is added into the silicone film. Besides that, when increasing the driving current, SiO2 stabilizes the chromaticity coordinate shift, which is a vital requirement for indoor lighting applications. Furthermore, SiO2 nanoparticles own excellent optical features, cost efficiency, and simple production will probably turn this material into a potential material in advancing the optical performance of WLEDs

    TiO2/silicone encapsulation film for achieving optical performance improvement of chip-on-board packaging LEDs

    Get PDF
    TiO2 nanoparticle and silicon composite has powerful effect of scattering, thus it is famous in enhancing the scattered light in light-emitting diode (LED) packages. To accomplish higher lighting performance in LED devices, a thin encapsulation layer of TiO2 with high concentration and silicon glue is introduced to complement the main encapsulation one. After conducting experiments, the results present that in the case of the main encapsulation including only silicone, the light extraction efficiency (LEE) of COB LEDs increases to 65%. On the other hand, when there is the additional layer of TiO2 and silicone, the improvement of LEE depends on the concentration of TiO2. As this nanoparticle concentration decreases from 0.12 to 0.035 g/cm3, the LEE can be enhanced from 6% to 24%. Moreover, at the average correlated color temperature (CCT) of approximately 8500 K, the layer of TiO2/silicone composite can help to accomplish the reduction of the angular correlated color temperature (CCT) deviation, from 900 to 470 K, within −90° to 90° viewing angle range

    MgCeAl11O19:Tb3+ and Mg8Ge2O11F2:Mn4+ in enhancing the color quality of remote phosphor LED

    Get PDF
    As the name infers, the triple-layer remote phosphor (TRP) has 3 phosphor layers includes the red Mg8Ge2O11F2:Mn4+ phosphor layer on the top, the green MgCeAl11O19:Tb3+ phosphor layer in the middle, and the yellow YAG:Ce3+ layer at the bottom and is mentioned as a solution to increase the chromaticity and luminescence adequacy of the white LEDs (WLEDs) in this article. As to control the red light for higher value achieve in the color rendering index (CRI), using red Mg8Ge2O11F2:Mn4+ phosphor in the TRP structure is recommended. All the outcomes indicate that when red phosphor Mg8Ge2O11F2:Mn4+ concentration grows the CRI gets higher values, and drastically declines when the concentration of green phosphor MgCeAl11O19:Tb3+ increases. As the same time, applying the green MgCeAl11O19:Tb3+ phosphor layer to manage the green light as it can make the luminous efficacy (LE) of WLEDs increase. In particular, the index of LE can also be improved over 40% by limiting the scatter of light and putting in green light. Moreover, to preserve the average correlated color temperature (ACCT) stable at 8500K, the yellow YAG:Ce3+ concentration must be cut down as the concentration of red and green phosphor rise

    Effects of BaSO4 nano-particles on the enhancement of the optical performance of white LEDs

    Get PDF
    The usage of BaSO4 nanoparticles on WLEDs luminous flux and color uniformity improvements have been analyzed and demonstrated in this manuscript. The mixture of BaSO4 and silicone placed on the yellow phosphor layer benefits the internal light scattering and thus enhances the angular correlated color temperature (CCT) homogeneity. Specifically, the blue-light intensity at large angles tend to increase and results in light intensity discrepancy, which can be corrected with added BaSO4. In addition to this, the BaSO4-silicone composite modifies the refractive index of the air-phosphor layer interface to an appropriate value, and thus, the luminous efficiency increases. The results show that the CCT deviations is reduced by 580 K, from 1000 K to 420 K, within the angle range from -700 to +700 with BaSO4 in the phosphor structure. The increase in luminous flux is also recorded by 2.25%, in comparison with that of the non-BaSO4 traditional structure, at the 120-mA driving current. Hence, integrating BaSO4 nanoparticles into the remote phosphor structure can contributes to the enhancement of both lumen output and CCT uniformity

    Multilayer phosphor-in-glass packaging for the development in WLED color uniformity

    Get PDF
    When mentioning the remote phosphor structure, the most noticeable advantage is its higher luminous flux than any other structure’s. However, there are existing flaws in their color uniformity and color rendering index (CRI). Thus, the improvements in these two optic factors must be improved for the better usage of remote phosphor geometry in modern WLED devices. Many researchers have drawn their attention to this idea, and then it has become the primary objective for their studies. In this paper, we also try to accomplish the same result by adjusting the distances between the phosphor layers and through that enhance the optical properties of WLEDs. The mie-scattering theory is applied in our calculations to ensure the reliability and accuracy of experimental results. In our research, with distance d = 0.64 mm, the luminous flux grew 9.7% in comparison to the original value. At 0.84 mm, the distance d enhanced the color uniformity by two times. In the meantime, the CRI remained static during the course of experiment. With suitable application, these results can bring valuable contributions to the development of next WELDs generation

    Utilizing CaCO3, CaF2, SiO2, and TiO2 phosphors as approaches to the improved color uniformity and lumen efficacy of WLEDs

    Get PDF
    The two elements that are most favorable in the quality evaluation for phosphor-converted LEDs (pcLEDs) these days are the chromatic homogeneity and the lumen output. In this study, a thorough research on enhancing color uniformity and luminous flux of pcLEDs that have a high correlated color temperature (CCT) of 8500K is carried out. The scattering enhancement particles (SEPs): CaCO3, CaF2, SiO2, and TiO2 are used to accomplish the goal by adding them to a yellow phosphor compounding Y3Al5O12:Ce3+, and comparing their characteristics afterwards. LightTools program is used to build an optical simulation and Mie-scattering theory helps to examine the achieved results. Specifically, the parameters included in SEPs’ scattering calculation are the scattering coefficients, the anisotropic scattering, the reduced scattering, and the scattering amplitudes at 455 nm and 595 nm. The outcomes presented that compared to other SEPs, TiO2 particles can yield the highest chromatic homogeneity. However, the lumen output reduces considerably as TiO2 concentration greatly increases while it can be bettered when using SiO2 particles with any particle size. For CaCO3 particles, the color deviation of 620 K CCT can be reduced with 30% concentration, leading to the recommendation of using CaCO3 to promote the CCT homogeneity and luminescence efficiency

    Using flat phosphor layer in dual-layer remote phosphor configuration to improve luminous efficacy

    Get PDF
    The phosphor layer shape and components distances are the subjects proposed to advance the quality of WLEDs in this article. The two distances, between phosphor layers (d1) and between the phosphor layer and the LED chip (d2) in Flat dual-remote phosphor (FDRP) and Concave dual-remote phosphor (CDRP) were examined by experiments to determine their impacts on WLEDs lighting performances. The results suggest that FDRP is a better option than CDRP for lighting performance. In each respective structure, the distances influence the lighting capacity and color output whenever they fluctuate. Therefore, to effectively control and study this phenomenon, the correlated color temperature is maintained at 8500 K, and the concentration of phosphor material is altered while the distances are changing. When d1 and d2 are at the starting value of 0, the recorded lumen output and chromatic performance of lighting devices are the lowest and begin to increase as d1 and d2 expand. Bigger d1 and d2 mean bigger scattering area and better chromatic light integration, which leads to higher color quality. Detailed results present that optimal values of d1 or d2 for the highest lumen output of 1020 lm are 0.08 mm or 0.63 mm, respectively. Meanwhile the lowest color deviation is accomplished with d1=0.64 mm or d2=1.35 mm

    Investigation on the application of ZnO nanostructures to improve the optical performance of white light-emitting diodes

    Get PDF
    Though combining blue LED chips with yellow phosphor has been the most common method in white light-emitting diode (WLED) production, the attained angular correlated color temperature (CCT) uniformity is still poor. Thus, this article proposes to add ZnO nanostructures to WLED packages to promote the color uniformity of the WLEDs. The outcomes of the research demonstrate that utilizing ZnO at different amount can affect the scattering energy and the CCT deviations in WLEDs packages in different extents. Particularly, adding the node-like (N-ZnO), sheet-like (S-ZnO), and rod-like (R-ZnO) leads to the corresponding decreases of CCT deviations from 3455.49 K to 96.30 K, 40.03 K, and 60.09 K, respectively. Meanwhile, with 0.25% N-ZnO, 0.75% S-ZnO, and 0.25 % R-ZnO, WLED devices can achieve both better CCT homogeneity and lower reduction in luminous flux. The results of this article can be a valuable document for the manufacturer to use as reference in improving their WLED products
    corecore