205 research outputs found

    Nanomaterials responding to microwaves: an emerging field for imaging and therapy

    Get PDF
    In recent years, new microwave-based imaging, sensing and hyperthermia applications have emerged in the field of diagnostics and therapy. For diagnosis, this technology involves the application of low power microwaves, utilising contrast between the relative permittivity of tissues to identify pathologies. This contrast can be further enhanced through the implementation of nanomaterials. For therapy, this technology can be applied in tissues either through hyperthermia, which can help anti-cancer drug tumour penetration or as ablation to destroy malignant tissues. Nanomaterials can absorb electromagnetic radiation and can enhance the microwave hyperthermic effect. In this review we aim to introduce this area of renewed interest and provide insights into current developments in its technologies and companion nanoparticles, as well as presenting an overview of applications for diagnosis and therapy

    Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by caco-2 cells - towards oral insulin

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright SpringerPurpose: The influence of polymer architecture on cellular uptake and transport across Caco-2 cells of novel amphiphilic polyelectrolyte-insulin nanocomplexes was investigated. Method: Polyallylamine (PAA) (15 kDa) was grafted with palmitoyl chains (Pa) and subsequently modified with quaternary ammonium moieties (QPa). These two amphiphilic polyelectrolytes (APs) were tagged with rhodamine and their uptake by Caco-2 cells or their polyelectrolyte complexes (PECs) with fluorescein isothiocyanate-insulin (FITC-insulin) uptake were investigated using fluorescence microscopy. The integrity of the monolayer was determined by measurement of transepithelial electrical resistance (TEER). Insulin transport through Caco-2 monolayers was determined during TEER experiments. Result: Pa and insulin were co-localised in the cell membranes while QPa complexes were found within the cytoplasm. QPa complex uptake was not affected by calcium, cytochalasin D or nocodazole. Uptake was reduced by co-incubation with sodium azide, an active transport inhibitor. Both polymers opened tight junctions reversibly where the TEER values fell by up to 35 % within 30 minutes incubation with Caco-2 cells. Insulin transport through monolayers increased when QPa was used (0.27 ngmL-1 of insulin in basal compartment) compared to Pa (0.14 ngmL-1 of insulin in basal compartment) after 2 hours. Conclusion: These APs have been shown to be taken up by Caco-2 cells and reversibly open tight cell junctions. Further work is required to optimise these formulations with a view to maximising their potential to facilitate oral delivery of insulin.Peer reviewe

    Interface Engineering of Water-Dispersible Near-Infrared-Emitting CuInZnS/ZnSe/ZnS Quantum Dots

    Get PDF
    © 2024 The Authors. Published by American Chemical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We report the synthesis of near-infrared (IR)-emitting core/shell/shell quantum dots of CuInZnS/ZnSe/ZnS and their phase transfer to water. The intermediate ZnSe shell was added to inhibit the migration of ions from the standard ZnS shell into the emitting core, which often leads to a blue shift in the emission profile. By engineering the interface between the core and terminal shell layer, the optical properties can be controlled, and emission was maintained in the near-IR region, making the materials attractive for biological applications. In addition, the hydrodynamic diameter of the particle was controlled using amphiphilic polymers.Peer reviewe

    Ultrasound mediated delivery of quantum dots from a capsule endoscope to the gastrointestinal wall

    Get PDF
    Biologic drugs, defined as therapeutic agents produced from or containing components of a living organism, are of growing importance to the pharmaceutical industry. Though oral delivery of medicine is convenient, biologics require invasive injections because of their poor bioavailability via oral routes. Delivery of biologics to the small intestine using electronic delivery with devices that are similar to capsule endoscopes is a promising means of overcoming this limitation and does not require reformulation of the therapeutic agent. The efficacy of such capsule devices for drug delivery could be further improved by increasing the permeability of the intestinal tract lining with an integrated ultrasound transducer to increase uptake. This paper describes a novel proof of concept capsule device capable of electronic application of focused ultrasound and delivery of therapeutic agents. Fluorescent markers, which were chosen as a model drug, were used to demonstrate in-vivo delivery in the porcine small intestine with this capsule. We show that the fluorescent markers can penetrate the mucus layer of the small intestine at low acoustic powers when combining microbubbles with focussed ultrasound. These findings suggest that the use of focused ultrasound together with microbubbles could play a role in the oral delivery of biologic therapeutics

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
    corecore