63 research outputs found

    The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications

    Get PDF
    Magnetic inductive heating (MIH) has been a topic of great interest because of its potential applications, especially in biomedicine. In this paper, the parameters characteristic for magnetic inductive heating power including maximum specific loss power (SLPmax), optimal nanoparticle diameter (Dc) and its width (ΔDc) are considered as being dependent on magnetic nanoparticle anisotropy (K). The calculated results suggest 3 different Néel-domination (N), overlapped Néel/Brownian (NB), and Brownian-domination (B) regions. The transition from NB- to B-region changes abruptly around critical anisotropy Kc. For magnetic nanoparticles with low K (K Kc) are opposite. The decreases of the SLPmax when increasing polydispersity and viscosity are characterized by different rates of d(SLPmax)/dσ and d(SLPmax)/dη depending on each domination region. The critical anisotropy Kc varies with the frequency of an alternating magnetic field. A possibility to improve heating power via increasing anisotropy is analyzed and deduced for Fe3O4 magnetic nanoparticles. For MIH application, the monodispersity requirement for magnetic nanoparticles in the B-region is less stringent, while materials in the N- and/or NB-regions are much more favorable in high viscous media. Experimental results on viscosity dependence of SLP for CoFe2O4 and MnFe2O4 ferrofluids are in good agreement with the calculations. These results indicated that magnetic nanoparticles in the N- and/or NB-regions are in general better for application in elevated viscosity media

    High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles

    Get PDF
    High magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures. Using a seeded growth method, we successfully synthesised chemically stable CoFe@Pt core/shell nanostructures. The obtained core/shell nanoparticles have high saturation magnetisation up to 135 emu g−1. The magnetisation value of the core/shell nanoparticles remains 93 emu g−1 after being exposed to air for 12 weeks. Hydrophobic CoFe@Pt nanoparticles were rendered water-dispersible by encapsulating with poly(maleic anhydride-alt-1-octadecene) (PMAO). These nanoparticles were stable in water for at least 3 months and in a wide range of pH from 2 to 11

    Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification

    Get PDF
    Classification of different gases is important, and it is possible to use different gas sensors for this purpose. Electronic noses, for example, combine separated gas sensors into an array for detecting different gases. However, the use of separated sensors in an array suffers from being bulky, high-energy consumption and complex fabrication processes. Generally, gas sensing properties, including gas selectivity, of semiconductor gas sensors are strongly dependent on their working temperature. It is therefore feasible to use a single device composed of identical sensors arranged in a temperature gradient for classification of multiple gases. Herein, we introduce a design for simple fabrication of gas sensor array based on bilayer Pt/SnO2 for real-time monitoring and classification of multiple gases. The study includes design simulation of the sensor array to find an effective gradient temperature, fabrication of the sensors and test of their performance. The array, composed of five sensors, was fabricated on a glass substrate without the need of backside etching to reduce heat loss. A SnO2 thin film sensitized with Pt on top deposited by sputtering was used as sensing material. The sensor array was tested against different gases including ethanol, methanol, isopropanol, acetone, ammonia, and hydrogen. Radar plots and principal component analysis were used to visualize the distinction of the tested gases and to enable effective classification

    Anesthesiologists' and surgeons' perceptions about routine pre-operative testing in low risk patients: application of the Theoretical Domains Framework to identify factors that influence physicians' decisions to order pre-operative tests

    Get PDF
    Background Routine pre-operative tests for anesthesia management are often ordered by both anesthesiologists and surgeons for healthy patients undergoing low-risk surgery. The Theoretical Domains Framework (TDF) was developed to investigate determinants of behaviour and identify potential behaviour change interventions. In this study, the TDF is used to explore anaesthesiologists’ and surgeons’ perceptions of ordering routine tests for healthy patients undergoing low-risk surgery. Conclusion We identified key factors that anesthesiologists and surgeons believe influence whether they order pre-operative tests routinely for anesthesia management for a healthy adults undergoing low-risk surgery. These beliefs identify potential individual, team, and organisation targets for behaviour change interventions to reduce unnecessary routine test ordering. Methods Sixteen clinicians (eleven anesthesiologists and five surgeons) throughout Ontario were recruited. An interview guide based on the TDF was developed to identify beliefs about preoperative testing practices. Content analysis of physicians’ statements into the relevant theoretical domains was performed. Specific beliefs were identified by grouping similar utterances of the interview participants. Relevant domains were identified by noting the frequencies of the beliefs reported, presence of conflicting beliefs, and perceived influence on the performance of the behaviour under investigation. Results Seven of the twelve domains were identified as likely relevant to changing clinicians’ behaviour about pre-operative test ordering for anesthesia management. Key beliefs were identified within these domains including: conflicting comments about who was responsible for the test-ordering (Social/professional role and identity); inability to cancel tests ordered by fellow physicians (Beliefs about capabilities and social influences); and the problem with tests being completed before the anesthesiologists see the patient (Beliefs about capabilities and Environmental context and resources). Often, tests were ordered by an anesthesiologist based on who may be the attending anesthesiologist on the day of surgery while surgeons ordered tests they thought anesthesiologists may need (Social influences). There were also conflicting comments about the potential consequences associated with reducing testing, from negative (delay or cancel patients’ surgeries), to indifference (little or no change in patient outcomes), to positive (save money, avoid unnecessary investigations) (Beliefs about consequences). Further, while most agreed that they are motivated to reduce ordering unnecessary tests (Motivation and goals), there was still a report of a gap between their motivation and practice (Behavioural regulation)
    corecore