1,826 research outputs found
Greening hotels: does motivating hotel employees promote in-role green performance? The role of culture
In the new global economy, environmentally friendly policies have become a central issue for firms. The increasing attention given to the benefits of those policies has prompted research on the development of environmental management systems that encourage employees to engage in environmental activities. However, there is limited evidence concerning the relationship between employee motivation and employees’ in-role green performance, in addition to the potential impact of culture and organizational citizenship behavior for the environment. Through a quantitative study of 301 managerial and non-managerial employees working in three- to five-star hotels, this study makes a major contribution by demonstrating that practices aimed at motivating hotel employees (e.g. green reward and performance management) are significantly linked with employees’ in-role green performance and organizational citizenship behavior for the environment. The findings also indicate that the influence of green rewards on employees’ in-role green performance and organizational citizenship behaviors for the environment is stronger when hotels are managed by Western corporations. Conversely, the study showed that the effect of green performance management on these two dependent variables is not moderated by culture. This article supports efforts to widen national cultural perspectives in the development and application of green human resource management
Recurring Measles Epidemic in Vietnam 2005-2009: Implication for Strengthened Control Strategies
Background: Measles remains a serious vaccine preventable cause of mortality in developing nations. Vietnam is aiming to achieve the level of immunity required to eliminate measles by maintaining a high coverage of routine first vaccinations in infants, routine second vaccinations at school entry and supplementary local campaigns in high-risk areas. Regular outbreaks of measles are reported, during 2005-2009
Detection of lithium in nearby young late-M dwarfs
Late M-type dwarfs in the solar neighborhood include a mixture of very
low-mass stars and brown dwarfs which is difficult to disentangle due to the
lack of constraints on their age such as trigonometric parallax, lithium
detection and space velocity.
We search for young brown dwarf candidates among a sample of 28 nearby late-M
dwarfs with spectral types between M5.0 and M9.0, and we also search for debris
disks around three of them.
Based on theoretical models, we used the color , the -band absolute
magnitude and the detection of the Li I 6708 doublet line as a strong
constraint to estimate masses and ages of our targets. For the search of debris
disks, we observed three targets at submillimeter wavelength of 850 m.
We report here the first clear detections of lithium absorption in four
targets and a marginal detection in one target. Our mass estimates indicate
that two of them are young brown dwarfs, two are young brown dwarf candidates
and one is a young very low-mass star. The closest young field brown dwarf in
our sample at only 15 pc is an excellent benchmark for further studying
physical properties of brown dwarfs in the range 100150 Myr. We did not
detect any debris disks around three late-M dwarfs, and we estimated upper
limits to the dust mass of debris disks around them.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and
Astrophysic
Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas
We show that microwave spectroscopy of a dense Rydberg gas trapped on a
superconducting atom chip in the dipole blockade regime reveals directly the
dipole-dipole many-body interaction energy spectrum. We use this method to
investigate the expansion of the Rydberg cloud under the effect of repulsive
van der Waals forces and the breakdown of the frozen gas approximation. This
study opens a promising route for quantum simulation of many-body systems and
quantum information transport in chains of strongly interacting Rydberg atoms.Comment: PACS: 03.67.-a, 32.80.Ee, 32.30.-
Secrecy outage probability of a NOMA scheme and impact imperfect channel state information in underlay cooperative cognitive networks
Security performance and the impact of imperfect channel state information (CSI) in underlay cooperative cognitive networks (UCCN) is investigated in this paper. In the proposed scheme, relay R uses non-orthogonal multiple access (NOMA) technology to transfer messages e1, e2 from the source node S to User 1 (U1) and User 2 (U2), respectively. An eavesdropper (E) is also proposed to wiretap the messages of U1 and U2. The transmission’s security performance in the proposed system was analyzed and performed over Rayleigh fading channels. Through numerical analysis, the results showed that the proposed system’s secrecy performance became more efficient when the eavesdropper node E was farther away from the source node S and the intermediate cooperative relay R. The secrecy performance of U1 was also compared to the secrecy performance of U2. Finally, the simulation results matched the Monte Carlo simulations well
Frustration Effects in Antiferromagnetic FCC Heisenberg Films
We study the effects of frustration in an antiferromagnetic film of FCC
lattice with Heisenberg spin model including an Ising-like anisotropy. Monte
Carlo (MC) simulations have been used to study thermodynamic properties of the
film. We show that the presence of the surface reduces the ground state (GS)
degeneracy found in the bulk. The GS is shown to depend on the surface in-plane
interaction with a critical value at which ordering of type I coexists
with ordering of type II. Near this value a reentrant phase is found. Various
physical quantities such as layer magnetizations and layer susceptibilities are
shown and discussed. The nature of the phase transition is also studied by
histogram technique. We have also used the Green's function (GF) method for the
quantum counterpart model. The results at low- show interesting effects of
quantum fluctuations. Results obtained by the GF method at high are
compared to those of MC simulations. A good agreement is observed.Comment: 11 pages, 19 figures, submitted to J. Phys.: Condensed Matte
Re-orientation Transition in Molecular Thin Films: Potts Model with Dipolar Interaction
We study the low-temperature behavior and the phase transition of a thin film
by Monte Carlo simulation. The thin film has a simple cubic lattice structure
where each site is occupied by a Potts parameter which indicates the molecular
orientation of the site. We take only three molecular orientations in this
paper which correspond to the 3-state Potts model. The Hamiltonian of the
system includes: (i) the exchange interaction between nearest-neighbor
sites and (ii) the long-range dipolar interaction of amplitude
truncated at a cutoff distance (iii) a single-ion perpendicular
anisotropy of amplitude . We allow between surface spins, and
otherwise. We show that the ground state depends on the the ratio
and . For a single layer, for a given , there is a critical value
below (above) which the ground-state (GS) configuration of molecular axes
is perpendicular (parallel) to the film surface. When the temperature is
increased, a re-orientation transition occurs near : the low- in-plane
ordering undergoes a transition to the perpendicular ordering at a finite ,
below the transition to the paramagnetic phase. The same phenomenon is observed
in the case of a film with a thickness. We show that the surface phase
transition can occur below or above the bulk transition depending on the ratio
. Surface and bulk order parameters as well as other physical quantities
are shown and discussed.Comment: 7 pages, 11 figures, submitted for publicatio
- …