We study the effects of frustration in an antiferromagnetic film of FCC
lattice with Heisenberg spin model including an Ising-like anisotropy. Monte
Carlo (MC) simulations have been used to study thermodynamic properties of the
film. We show that the presence of the surface reduces the ground state (GS)
degeneracy found in the bulk. The GS is shown to depend on the surface in-plane
interaction Js with a critical value at which ordering of type I coexists
with ordering of type II. Near this value a reentrant phase is found. Various
physical quantities such as layer magnetizations and layer susceptibilities are
shown and discussed. The nature of the phase transition is also studied by
histogram technique. We have also used the Green's function (GF) method for the
quantum counterpart model. The results at low-T show interesting effects of
quantum fluctuations. Results obtained by the GF method at high T are
compared to those of MC simulations. A good agreement is observed.Comment: 11 pages, 19 figures, submitted to J. Phys.: Condensed Matte