43 research outputs found
CpG-island methylation study of liver fluke-related cholangiocarcinoma
Background: Genetic changes have been widely reported in association with cholangiocarcinoma (CCA), while epigenetic changes are poorly characterised. We aimed to further evaluate CpG-island hypermethylation in CCA at candidate loci, which may have potential as diagnostic or prognostic biomarkers. Methods: We analysed methylation of 26 CpG-islands in 102 liver fluke related-CCA and 29 adjacent normal samples using methylation-specific PCR (MSP). Methylation of interest loci was confirmed using pyrosequencing and/or combined bisulfite restriction analysis, and protein expression by immunohistochemistry. Results: A number of CpG-islands (OPCML, SFRP1, HIC1, PTEN and DcR1) showed frequency of hypermethylation in >28% of CCA, but not adjacent normal tissues. The results showed that 91% of CCA were methylated in at least one CpG-island. The OPCML was the most frequently methylated locus (72.5%) and was more frequently methylated in less differentiated CCA. Patients with methylated DcR1 had significantly longer overall survival (Median; 41.7 vs 21.7 weeks, P=0.027). Low-protein expression was found in >70% of CCA with methylation of OPCML or DcR1. Conclusion: Aberrant hypermethylation of certain loci is a common event in liver fluke-related CCA and may potentially contribute to cholangiocarcinogenesis. The OPCML and DcR1 might serve as methylation biomarkers in CCA that can be readily examined by MSP
Elevated Plasma IL-6 Associates with Increased Risk of Advanced Fibrosis and Cholangiocarcinoma in Individuals Infected by Opisthorchis viverrini
Opisthorchis viverrini is considered among the most important of the food-borne trematodes due to its strong association with advanced periductal fibrosis and bile duct cancer (cholangiocarcinoma). We investigated the relationship between plasma levels of Interleukin (IL)-6 and the risk of developing advanced fibrosis and bile duct cancer from chronic Opisthorchis infection. We show that IL-6 circulates in plasma at concentrations 58 times higher in individuals with advanced fibrosis than age, sex, and nearest-neighbor matched controls and 221 times higher in individuals with bile duct cancer than controls. We also observed a dose-response relationship between increasing levels of plasma IL-6 and increasing risk of advanced fibrosis and bile duct cancer; for example, in age and sex adjusted analyses, individuals with the highest quartiles of plasma IL-6 had a 19 times greater risk of developing advanced periductal fibrosis and a 150 times greater risk of developing of bile duct cancer than individuals with no detectable level of plasma IL-6. Finally, we show that a single plasma IL-6 measurement has excellent positive predictive value for the detection of both advanced bile duct fibrosis and bile duct cancer in regions with high O. viverrini transmission. These data support our hypothesis that common mechanisms drive bile duct fibrosis and bile duct tumorogenesis from chronic O. viverrini infection. Our study also adds a unique aspect to the literature on circulating levels of IL-6 as an immune marker of hepatobiliary pathology by showing that high levels of circulating IL-6 in plasma are not related to infection with O. viverrini, but to the development of the advanced and often lethal pathologies resulting from chronic O. viverrini infection
A Granulin-Like Growth Factor Secreted by the Carcinogenic Liver Fluke, Opisthorchis viverrini, Promotes Proliferation of Host Cells
The human liver fluke, Opisthorchis viverrini, infects millions of people throughout south-east Asia and is a major cause of cholangiocarcinoma, or cancer of the bile ducts. The mechanisms by which chronic infection with O. viverrini results in cholangiocarcinogenesis are multi-factorial, but one such mechanism is the secretion of parasite proteins with mitogenic properties into the bile ducts, driving cell proliferation and creating a tumorigenic environment. Using a proteomic approach, we identified a homologue of human granulin, a potent growth factor involved in cell proliferation and wound healing, in the excretory/secretory (ES) products of the parasite. O. viverrini granulin, termed Ov-GRN-1, was expressed in most parasite tissues, particularly the gut and tegument. Furthermore, Ov-GRN-1 was detected in situ on the surface of biliary epithelial cells of hamsters experimentally infected with O. viverrini. Recombinant Ov-GRN-1 was expressed in E. coli and refolded from inclusion bodies. Refolded protein stimulated proliferation of murine fibroblasts at nanomolar concentrations, and proliferation was inhibited by the MAPK kinase inhibitor, U0126. Antibodies raised to recombinant Ov-GRN-1 inhibited the ability of O. viverrini ES products to induce proliferation of murine fibroblasts and a human cholangiocarcinoma cell line in vitro, indicating that Ov-GRN-1 is the major growth factor present in O. viverrini ES products. This is the first report of a secreted growth factor from a parasitic worm that induces proliferation of host cells, and supports a role for this fluke protein in establishment of a tumorigenic environment that may ultimately manifest as cholangiocarcinoma
Unlocking the Transcriptomes of Two Carcinogenic Parasites, Clonorchis sinensis and Opisthorchis viverrini
The two parasitic trematodes, Clonorchis sinensis and Opisthorchis viverrini, have a major impact on the health of tens of millions of humans throughout Asia. The greatest impact is through the malignant cancer ( = cholangiocarcinoma) that these parasites induce in chronically infected people. Therefore, both C. sinensis and O. viverrini have been classified by the World Health Organization (WHO) as Group 1 carcinogens. Despite their impact, little is known about these parasites and their interplay with the host at the molecular level. Recent advances in genomics and bioinformatics provide unique opportunities to gain improved insights into the biology of parasites as well as their relationships with their hosts at the molecular level. The present study elucidates the transcriptomes of C. sinensis and O. viverrini using a platform based on next-generation (high throughput) sequencing and advanced in silico analyses. From 500,000 sequences, >50,000 sequences were assembled for each species and categorized as biologically relevant based on homology searches, gene ontology and/or pathway mapping. The results of the present study could assist in defining molecules that are essential for the development, reproduction and survival of liver flukes and/or that are linked to the development of cholangiocarcinoma. This study also lays a foundation for future genomic and proteomic research of C. sinensis and O. viverrini and the cancers that they are known to induce, as well as novel intervention strategies
