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Abstract

The regulation of cancerous tumor development is converged upon by multiple pathways and factors. Besides
environmental factors, gastrointestinal (GI) tract cancer can be caused by chronic inflammation, which is generally
induced by bacteria, viruses, and parasites. The role of these inducers in cancer development, cell differentiation
and transformation, cell cycle deregulation, and in the expression of tumor-associated genes cannot be ignored.
Although Helicobacter pylori activates many oncogenic pathways, particularly those in gastric and colorectal cancers,
the role of viruses in tumor development is also significant. Viruses possess significant oncogenic potential to
interfere with normal cell cycle control and genome stability, stimulating the growth of deregulated cells. An
increasing amount of recent data also implies the association of GI cancers with bacterial colonization and viruses.
This review focuses on host-cell interactions that facilitate primary mechanisms of tumorigenesis and provides new
insights into novel GI cancer treatments.
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Review
A. Gastric Cancers
Despite many groundbreaking discoveries in biomedical
research, cancer is still a major health risk. Gastrointes-
tinal (GI) cancers account for more than 20% of all can-
cers worldwide [1], and this holds true for both
developing and developed countries [2].
Although genetic predisposition and lifestyle are consid-

ered the leading risk factors for cancer development, in-
creasing clinical data suggest that pathogens may play a
more significant role than previously thought. In this re-
view, we focus on the implication of pathogens in tumor
development in the three major GI cancers–gastric, colo-
rectal, and liver.

A1. Gastric cancer (GC) and bacterial infections
Helicobacter pylori colonization of the human gastric
mucosa occurs in 50% of the human population and
is a key factor in GC development. Having been categor-
ized as a class I carcinogen by the World Health
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Organization in 1994, and this categorization has been
reiterated by the International Agency for Research on
Cancer in 2010 [3], H. pylori possess virulence factors
such as the cytotoxin-associated gene (cagA) and vacuo-
lating cytotoxin gene (vacA) [4]. The oncoprotein CagA
and the type IV secretion machinery are encoded by the
cag pathogenicity island (cag PAI). H. pylori employs
type IV secretion machinery to insert CagA into the host
cell cytoplasm, thus causing cell proliferation, morpho-
logic alterations, and cell motility [5]. These processes
are further linked to morphologic alterations of the host
cell, such as the loss of cell polarity, dissolution of cellu-
lar junctions, remodeling of the extracellular matrix, and
activation of the β-catenin pathway, thus conferring an
oncogenic potential to the cell [6]. Parsonnet et al. [7]
and Torres et al. [8] reported that CagA-seropositive
GC patients have a higher risk of cancer compared to
CagA-seronegative patients. H. pylori also transmits Vac
A, a bacterial toxin, which inhibits glycogen synthase
kinase 3-β-regulated signaling leading to β-catenin re-
lease and altered apoptosis as well as cell-cycle regula-
tion [9,10]. Additionally, H. pylori expresses an outer-
membrane protein, BabA, which may cause enhanced
inflammation and dense bacterial colonization [11].
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Therefore, H. pylori strains that possess CagA, VacA, and
BabA proteins confer a greater risk of GC induction.
CagA can also interact with VacA to cause the deregu-

lation of nuclear factor of activated T-cell signaling [12].
This leads to p21 expression, which influences the fate
of cell cycle and cell differentiation. CagA binds to
partitioning-defective and mitogen-activated protein/
microtubule affinity-regulating kinase complexes, result-
ing in reduced kinase activity and disturbed cell polarity
[13]. CagA interaction with E-cadherin affects β-catenin
signaling, leading to intestinal trans-differentiation [14].
Ooi et al. [15] reported the activation of three main

oncogenic pathways in the majority of GC patients: (1)
proliferation/stem cells were activated in 40% of the
patients, (2) nuclear factor kappa beta (NF-κβ) activity
was stimulated in 39% of the patients, and (3) Wnt/β-
catenin activity was stimulated in 46% of the GC
patients. Deregulation of these three pathways was
observed in more than 70% of the patients diagnosed
with GC, which resulted in increased inflammatory cyto-
kine production, abnormal apoptosis, undesirable epi-
thelial cell proliferation/differentiation, and epithelial cell
transformation [15].
H. pylori infection causes the activation of oncogenic

pathways, thus leading to the aberrant expression of
genes that are crucial in gastric carcinogenesis. Hirata
et al. [16] found that NF-kβ is activated by H. pylori and
is observed in the majority of GCs. The relationship be-
tween H. pylori-induced inflammation and oncogenic
mechanisms of the Wnt/β-catenin and prostaglandin E2
pathways has been established [17]. It is implicated that
the activation of both the Wnt and prostaglandin E2
pathways results in the formation of gastric tumors via
the metaplasia-carcinoma sequence. CagA deregulates
the Wnt/β-catenin pathway, and upon interaction with
E-cadherin, it destroys the formation of the complex be-
tween E-cadherin and β-catenin. This further causes the
activation of the cdx1 and p21 genes and promotes the
aberrant expression of goblet-cell mucin (MUC2) [14],
an intestinal differentiation marker.
H. pylori interferes with epigenetic regulation, particu-

larly via microRNAs (miRNAs). miRNAs are small, non-
coding RNA molecules that are involved in the
post-transcriptional regulation of gene expression during
the processes of cell proliferation and development. Spe-
cific miRNAs are recognized as tumor suppressors, be-
cause their expression is altered in cancer phenotypes
[18]. H. pylori has evolved a mechanism to hijack
miRNA, thus suppressing host cellular functions to es-
tablish infection. It has recently been observed that
miR-21 was upregulated in cells obtained from GC
patients and in tissues from patients who were chronic-
ally infected with H. pylori [18]. miR-21 targets the
phosphatase and tensin homolog phosphatase and actin-
binding protein tropomyosin I, which are tumor sup-
pressors. Consequently, miR-21 aids in the survival of
deregulated cells. It has been reported for the first time
that miR-21 is altered in H. pylori infection [18]. Ectopic
over-expression of miR-21 promoted cell proliferation
and inhibited apoptosis.
According to a study by Li et al. [19], another type of

miRNA, miR-222, is upregulated in H. pylori-infected
GC. miR-222 is known to participate in the progression
of cancer by promoting cell proliferation [19], which
suggests that H. pylori may serve as a cancer inducer by
up regulating miR-222. Till date, only miR-21 and
miR222 are the two types of miRNAs known to be upre-
gulated in H. pylori infection. Further studies are
required to investigate the exact role of microRNAs in
gastric carcinogenesis.
In addition, there is growing evidence that Helicobac-

ter spp plays a significant role in the bacterial cause of
GC in rodents [20]. H. felis is known to cause GC in
C57BL/6 mice, which exhibit a histological progression
of cancer similar to that observed in H. pylori-infected
human subjects. H. felis is different from H. pylori in
that H. felis does not possess PAI and cag genes.

A2. GC and viral infections
The presence of Epstein-Barr virus (EBV) in the neo-
plastic cells in GC is defined as EBV-associated gastric
carcinoma (EBVaGC). It is estimated that 10% of the
total GC cases are related to EBVaGC, and more than
90,000 patients are diagnosed annually with EBVaGC
[21]. There is a strong association between the presence
of EBV and gastric carcinoma due to the oncogenic
properties of the virus [22]. EBV encodes for the latent
viral products Epstein-Barr nuclear antigen 1, Epstein-
Barr virus-encoded small RNAs (EBERs), and latent
membrane protein 2A (LMP2A), as well as encodes for
transcripts from the BamH1 A region, such as EBV-
encoded BamH1-A reading frame-1.
Epstein-Barr nuclear antigen 1 is constitutively expressed

in EBVaGC, because it is vital for maintaining EBV replica-
tion in the host [23]. EBERs are present in all patients diag-
nosed with EBVaGC [24-26]. EBER1 upregulated the
expression of insulin-like growth factor, thus promoting the
growth of NU-GC-3 gastric cancer cells [27].
LMP2A was reported to be expressed in 50% of all

EBVaGC cases [28,29]. It upregulated DNA methyl
transferase 1 through signal transducer and activator
of transcription 3 phosphorylation, which causes pro-
moter hypermethylation of phosphatase and tensin
homolog, a tumor suppressor gene [30]. In addition,
following EBV infection, LMP2A increases cell sur-
vival in GC cell lines, thus making them resistant to
serum deprivation-induced apoptosis [31]. LMP2A
plays an important role in carcinogenesis; it modifies



Aituov et al. Infectious Agents and Cancer 2012, 7:18 Page 3 of 8
http://www.infectagentscancer.com/content/7/1/18
normal B-cell development and maintains EBV la-
tency [32]. The regulation of viral and cellular gene
expression through altered NF-κB activity implies an
essential role of LMP2A in carcinogenesis [33]. EBV-
encoded BamH1-A reading frame-1 leads to an in-
crease in the bcl-2/bax ratio, and as a result, GC cells
escape apoptosis [34]. EBVaGCs are resistant to apop-
tosis compared to EBV-negative GCs, which suggests
that resistance to apoptosis is an essential feature of
EBVaGCs [35,36]. Moreover, a higher methylation rate
of tumor-related genes such as p14ARF, p15,
p16INK4A, TIMP3, E-cad, DAPK, and GSTP1 was
observed in EBVaGCs compared to EBV-negative GCs
[31]. In terms of clinopathologic characteristics,
EBVaGC is predominant in males, and the most com-
mon location is the proximal stomach, with a high
frequency found in diffuse-type gastric adenocarcin-
oma. Chen et al. [37] showed that the frequency of
EBVaGC is significantly higher in gastric remnant car-
cinoma (GRC) than in conventional gastric
carcinoma.
Another virus that is reported to play a role in GC

is the human polyomavirus called the John Cunning-
ham virus (JCV). JCV induces oncogenesis by expres-
sing the “transforming antigen” (T-Ag). T-Ag acts as
a carcinogen by interacting with p53 and the cell-
cycle regulator pRb, which consequently leads to an
uncontrolled growth of cancerous cells. This leads to
the loss of genomic stability, which is manifested as
an activation of oncogenes and inactivation of tumor
suppressor genes. JCV T-Ag interferes with the gen-
ome stability of the cell through the inhibition of
homologous recombination during DNA repair [38].
Furthermore, it has been demonstrated that more
than 50% of GC patients show chromosomal instabil-
ity including loss of heterozygosity and various
chromosomal rearrangements [39,40]. Shin et al. [41]
revealed the presence of JCV T-Ag in gastric tissues,
where T-Ag was present in 21 out of 37 GC patients
(57%). This suggests an association between JCV
polyomavirus and GCs. Other studies have shown
that JCV T-Ag DNA sequences are present in 80% to
90% of colorectal cancers (CRCs) [42,43].

A3. GC and parasitic infections
The human digestive system is densely populated not
only with bacteria and viruses, but also with parasites.
The role of parasites in GC tumor progression has
been recently elucidated. Toxocariasis was confirmed
serologically in five male patients, of which three had
GC, and two had CRC [44]. Additionally, there was a
case report where Microfilaria was found in a 55-
year-old man diagnosed with gastric carcinoma, al-
though the underlying mechanism of tumor
development still needs to be investigated [45]. Tro-
pheryma whippelii has been strongly associated with
specific cases of gastric adenocarcinoma; however, the
frequency of this association is considered to be low
[46].

B. Colorectal cancer
According to the American Cancer Society, CRC is
the fourth most common cancer in men and the third
most common cancer in women, worldwide [20]. Epi-
demiological data accumulated so far has established
an association between CRC development and various
environmental factors, such as high-calorie diet and
obesity; however, the data seems to be contradictory,
and these are not recognized as high-risk factors [47].
Progression to CRC, similar to other cancers, is a
multistep process, often with a background of gen-
omic instability. Several molecular hallmarks are char-
acteristic of sporadic CRCs that include chromosomal
and microsatellite instability, together with epigenetic
silencing via CpG methylation [48]. In contrast to
other GI cancers, a direct causal association between
CRC development and pathogen infection (bacteria
and viruses) has not yet been established [49]. There-
fore, extensive studies have been carried out in the
past decade to gain more insight into this field.

B1. CRC and bacterial infections
Streptococcus bovis bacteremia was associated with both
colonic neoplasia and extra colonic malignant diseases,
despite the fact that it is known as a commensal of the
human GI tract [50]. Antibodies to S. bovis surface anti-
gens have been identified in patients with CRC, where
increased IgG titers were more consistent with a chronic
rather than an acute infection [51]. Moreover, S. bovis
antigens were also detected in polyps, supporting the
finding that S. bovis infection occurs early during CRC
carcinogenesis [51]. As previously mentioned, H. pylori
is a causal factor in GC development, and therefore
might play a role in the pathogenesis of other GI can-
cers. A number of studies have identified H. pylori DNA
in biopsies of CRC patients [52,53].

At least three bacterial toxins have been characterized
that might trigger cellular proliferation. The Bacteroides
fragilis toxin disrupts cell cytoskeleton and activates c-
Myc and cyclin-D, leading to increased proliferation
[54,55]. Cytotoxic necrotizing factor produced by
Escherichia coli strains activates Rho GTPases and
modifies the cytoskeleton, resulting in the stimulation
of metastatic activity [56,57]. This toxin also triggers
G1-to-S phase transition to induce host genome
replication [58]. H. pylori-encoded cag PAI toxin and
vacuolating cytotoxin were shown to modulate cell
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division and apoptosis by altering the mitogen-activated
protein kinase and epidermal growth factor receptor
pathways [59].
Several hypotheses have been proposed to explain the

oncogenic potential of bacteria. Inflammation in re-
sponse to bacterial infection results in elevated produc-
tion of cytokines and reactive oxygen species (ROS),
which in turn leads to the up regulation of cyclooxygen-
ase 2 and NF-κB [60]. ROS production is highly likely to
induce neoplastic transformation via DNA damage [61].
Bacteria might either damage DNA or modulate DNA-
repair pathways, increasing their susceptibility to som-
atic mutations [56]. Activated cyclooxygenase 2 and NF-
κB generally inhibit apoptosis [62]. Furthermore, ROS
generation by commensal bacteria, such as S. bovis,
might also lead to genomic instability and result in
mutations [60].

B2. CRC and viral infections
A number of viruses have also been implicated in CRC
pathogenesis. These include JCV, EBV, cytomegalovirus
(CMV), and human papillomavirus (HPV), and the func-
tional roles of their genes have been identified in various
stages of CRC [49]. For instance, it has been previously
reported that JCV DNA sequences are frequently present
in the upper and lower GI tracts and in CRCs [63]. Re-
cently, it was demonstrated that T-Ag is involved in Wnt
signaling by forming a complex with β-catenin, which
results in the transcriptional activation of c-Myc and cyc-
lin D1 [64]. It is currently established that the c-myc gene
is over-expressed in nearly 70% of CRCs [65]. Further-
more, Goel et al. (2006) demonstrated a strong associ-
ation between T-Ag expression and chromosome
instability in CRCs [66]. They also revealed a direct link
between T-Ag expression and aberrant DNA methylation
in CRCs. These data seem to be consistent with the
aforementioned tumor-inducing mechanisms employed
by JCV in GC patients.
EBV DNA was identified in 32% of colorectal adenocar-

cinomas [67], CMV DNA was detected in 80% of carcin-
omas and polyps [68], and HPV DNA was identified in
60% of adenomas and 97% of carcinomas [69]. These find-
ings were associated with caspase 3 inhibition (in the case
of EBV) [67], up regulation of Fos, Jun, and Myc onco-
genes (in the case of CMV) [68,70], and inactivation of the
tumor suppressors p53 and pRb (in the case of HPV) [71].

C. Liver cancer
Liver cancer (the most common form known as hepato-
cellular carcinoma [HCC]) is the sixth most prevalent
malignant tumor in the world, with more than 600,000
new cases being diagnosed each year, and is the third
most common cause of cancer-related mortality [72].
HCC is a malignant cancer with a poor prognosis and
develops as a complication of liver cirrhosis [73]. Mul-
tiple mechanisms have been reported to contribute to
the process of liver carcinogenesis [74].
When the regulation of cell growth is impaired, un-

controlled cell division results in HCC. Mutations in
growth factors, together with chronic cell injury and re-
generation, cause excessive hepatocyte proliferation [75].
Subsequently, immortal cells emerge that are susceptible
to DNA damage by ROS or environmental factors, even-
tually leading to malignant hepatocyte transformation
[75]. Although some pathophysiological aspects of liver
carcinogenesis are known, we still lack a comprehensive
picture of the process.

C1. HCC and viral infections
Although alcohol-related diseases are known to cause
HCC, infection with hepatitis C and hepatitis B viruses
(HCV and HBV) is the most common risk factor [76].
Despite a significant decline in the rates of HBV infec-
tion and alcohol-related diseases, HCV alone still
accounts for most HCC cases in the developed world
[77,78]. In addition to causing HCC, HCV infection is
shown to induce severe liver fibrosis and cirrhosis, as
well as GI bleeding [79]. As in GC and CRC, various
mechanisms are implicated in the host-viral interactions
that lead to HCC progression [80].
Experimental data suggests that HCV causes malig-

nant transformation of hepatocytes directly by regulating
different signaling pathways [81]. For instance, HCV-
encoded proteins, such as non-structural proteins 3, 4B,
and 5A, were shown to modulate oncogenic pathways
leading to hepatocellular transformation [81].
In HCC patients, the HCV core and NS5A proteins

have been reported to induce accumulation of β-catenin
molecules that results in impaired Wnt-β-catenin signal-
ing [81]. As mentioned previously, a similar strategy is
employed by viral and bacterial pathogens in GC and
CRCs. Furthermore, the HCV core protein was reported
to interact directly with p53, p21, and NF-κB [82]. As
mentioned previously, pathogens adapt similar mechan-
isms to modulate signaling pathways in GC and CRCs.

C2. HCC and fungal infections
Environmental toxins such as fungal aflatoxin are
shown to be carcinogenic in some parts of Asia and
Africa [77,83]. Recently, the G249T mutation in the
p53 gene was found in more than 50% of HCC
patients from Southern Africa and some parts of
China [84,85]. This mutation results in the expression
of a defective p53 and is linked with aflatoxin B1
(AFB1) contamination in the local food [86]. In other
geographic regions with undetectable or low levels of
AFB1 mycotoxin in food, analogous p53 mutations in
HCC were not found [87]. It was later demonstrated
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that the AFB1 mycotoxin acts as a cofactor during
existing HBV infection, leading to enhanced hepato-
carcinogenesis in these areas of the world [88].

C3. HCC and bacterial infections
Besides studies on the involvement of viruses and
fungi, compelling data are also available on the role
of bacteria in the development of HCC. An associ-
ation between H. pylori and liver diseases has been
established on the basis of numerous reports on iden-
tification of H. pylori DNA in various liver diseases
[89-91].
Data from animal models suggest that bacterial

microorganisms may directly induce carcinogenesis.
Hepatic gene expression profiling in H. hepaticus-
infected mice with advancing hepatocellular dysplasia
revealed an up regulation of the putative tumor mar-
kers [92]. These tumor markers included H19, which
activates insulin-like growth factor-II associated with
hepatocarcinogenesis [93]. Moreover, acute-phase in-
flammatory proteins were also shown to be upregu-
lated in the liver as a result of H. hepaticus infection
[92].
Enteric Helicobacter bacteria also produce toxins that

cause liver tissue damage [94]. It is well known that
H. hepaticus produces a cytolethal distending toxin
(CDT) with DNase activity [95], which may induce
tumor development. As seen in CRC and GC, the VacA
cytotoxin of H. pylori could also be involved in direct
hepatocellular damage in vivo [12].

C4. HCC and parasitic infections
Other than microorganisms, helminthes, all of which are
trematodes, are strongly implicated in carcinogenesis [96].
The International Agency for Research on Cancer has
categorized Schistosoma haematobium and Opisthorchis
viverrini as group 1 and Clonorchis sinensis as group 2
carcinogens [97]. Infection with S. haematobium often
leads to urinary bladder carcinoma, whereas the liver
flukes O. viverrini and C. sinensis are linked to the de-
velopment of bile duct cancer (cholangiocarcinoma) and
liver cancer (hepatocarcinoma) in humans [98,99].
Although helminth-induced tumorigenesis may in-

volve a number of complex mechanisms, chronic inflam-
mation is a key feature [100]. Alternatively, parasite eggs
and secreted products may cause physical damage lead-
ing to hyperplasia of the damaged liver tissue [90].

D. Concluding remarks: Time for a change in the
treatment paradigm?
Currently, approximately 15%–20% of all cancer cases
worldwide and 26.3% of cancer cases in developing
countries are attributable to pathogenic agents [96,101].
This equates to approximately 1,375,000 preventable
cancer deaths per year [96]. It should not be surprising
that one in every five malignant tumors can originate
from pathogen-induced infection [102]. An increasing
amount of data suggests that the frequency with which
infectious agents contribute to cancer progression might
be more than the aforementioned statistics. It is of cru-
cial importance to consider the burden of infection
caused by these pathogens due to the fact that both viral
and microbial infections can accelerate the tumor devel-
opment and tumor progression.
An understanding of the role that these pathogens

play in tumor development may lead us towards new
cancer treatment options that could subsequently in-
crease the survival of cancer patients. This notion is
supported by clinical data; it is reported that 83% of
GCs were eradicated by treatment with the antibiotic,
nitazoxanide [103]. To date, the 2-week antibiotic
regimen for H. pylori has proved effective in reducing
the prevalence of precancerous gastric lesions [104].
In addition to antibiotics, the frequent use of aspirin
and non-steroidal anti-inflammatory drugs has been
suggested as a protective factor in GC [105,106].
There was a 50% reduction in the incidence of GC in
patients who took aspirin more often, i.e., 16 times a
month, as well as a reduced gastric cancer risk in
individuals taking non-aspirin non-steroidal anti-
inflammatory drugs (NSAIDs). In EBVaGC, demethy-
lating agents such as 5-aza cytidine are suggested as
an effective treatment in lytic EBV infection [107].
For the treatment of CRC, thiazolides represent a

novel class of antimicrobials against bacterial and viral
pathogens, as well as helminthes and protozoan’s [108].
Thiazolides have been shown to induce glutathione
S-transferase P1 (GSTP1)-dependent cell death in
human colon cancer cells infected with a wide range of
anaerobic bacteria, viruses, protozoan’s, and helminthes
[109]. Their efficacy in CRC treatment can be attributed
to their antimicrobial nature and this has been demon-
strated by different laboratories [110,111]. Interestingly,
it was also demonstrated that these antimicrobials
induced apoptosis in CRC cells, with no significant side
effects on normal colorectal cells [112].
Combined treatment with pegylated interferon plus riba-

virin is now accepted as the standard therapy for HCC
caused by chronic HCV infection [113]. HCV replication
inhibitors, mainly HCV NS3/4A protease and NS5B poly-
merase, have been approved and are currently in phase II
and III trials, which should significantly improve HCV
treatment [114]. Similar antiviral strategies are used to treat
virus-induced complications resulting in HCC develop-
ment [115]. In addition to antiviral therapy, antimicrobial
strategies are being successfully employed. The previously
mentioned thiazolides have been shown to have a broad-
spectrum activity against pathogens, not only in CRCs, but
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also in liver cancers and in other pathogen-induced GI car-
cinomas [110].
With accumulating data, it is becoming clear that

there is a need to initiate adjuvant and prophylactic
therapy long before starting traditional chemotherapy,
especially in malignant GI tumors. This necessitates a
detailed understanding of pathogens as promoters,
initiators, or complicators of carcinogenesis. Compre-
hensive knowledge of pathogen-induced carcinogen-
esis in GI tract cancers will possibly help us
reconsider our appreciation for antivirals and antimi-
crobials in cancer treatment and adapt an optimal ap-
proach to cancer therapy in the 21st century.
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