114 research outputs found
Private Incremental Regression
Data is continuously generated by modern data sources, and a recent challenge
in machine learning has been to develop techniques that perform well in an
incremental (streaming) setting. In this paper, we investigate the problem of
private machine learning, where as common in practice, the data is not given at
once, but rather arrives incrementally over time.
We introduce the problems of private incremental ERM and private incremental
regression where the general goal is to always maintain a good empirical risk
minimizer for the history observed under differential privacy. Our first
contribution is a generic transformation of private batch ERM mechanisms into
private incremental ERM mechanisms, based on a simple idea of invoking the
private batch ERM procedure at some regular time intervals. We take this
construction as a baseline for comparison. We then provide two mechanisms for
the private incremental regression problem. Our first mechanism is based on
privately constructing a noisy incremental gradient function, which is then
used in a modified projected gradient procedure at every timestep. This
mechanism has an excess empirical risk of , where is the
dimensionality of the data. While from the results of [Bassily et al. 2014]
this bound is tight in the worst-case, we show that certain geometric
properties of the input and constraint set can be used to derive significantly
better results for certain interesting regression problems.Comment: To appear in PODS 201
Making sense of the bizarre behaviour of horizons in the McVittie spacetime
The bizarre behaviour of the apparent (black hole and cosmological) horizons
of the McVittie spacetime is discussed using, as an analogy, the
Schwarzschild-de Sitter-Kottler spacetime (which is a special case of McVittie
anyway). For a dust-dominated "background" universe, a black hole cannot exist
at early times because its (apparent) horizon would be larger than the
cosmological(apparent) horizon. A phantom-dominated "background" universe
causes this situation, and the horizon behaviour, to be time-reversed.Comment: 8 pages, 3 figure
Black Holes in the Universe: Generalized Lemaitre-Tolman-Bondi Solutions
We present new exact solutions {which presumably describe} black holes in the
background of a spatially flat, pressureless dark matter (DM)-, or dark matter
plus dark energy (DM+DE)-, or quintom-dominated universe. These solutions
generalize Lemaitre-Tolman-Bondi metrics. For a DM- or (DM+DE)-dominated
universe, the area of the black hole apparent horizon (AH) decreases with the
expansion of the universe while that of the cosmic AH increases. However, for a
quintom-dominated universe, the black hole AH first shrinks and then expands,
while the cosmic AH first expands and then shrinks. A (DM+DE)-dominated
universe containing a black hole will evolve to the Schwarzschild-de Sitter
solution with both AHs approaching constant size. In a quintom-dominated
universe, the black hole and cosmic AHs will coincide at a certain time, after
which the singularity becomes naked, violating Cosmic Censorship.Comment: 13 pages, 4 figure
Cosmological expansion and local physics
The interplay between cosmological expansion and local attraction in a
gravitationally bound system is revisited in various regimes. First, weakly
gravitating Newtonian systems are considered, followed by various exact
solutions describing a relativistic central object embedded in a Friedmann
universe. It is shown that the ``all or nothing'' behaviour recently discovered
(i.e., weakly coupled systems are comoving while strongly coupled ones resist
the cosmic expansion) is limited to the de Sitter background. New exact
solutions are presented which describe black holes perfectly comoving with a
generic Friedmann universe. The possibility of violating cosmic censorship for
a black hole approaching the Big Rip is also discussed.Comment: 17 pages, LaTeX, to appear in Phys. Rev.
EXMOTIF: efficient structured motif extraction
BACKGROUND: Extracting motifs from sequences is a mainstay of bioinformatics. We look at the problem of mining structured motifs, which allow variable length gaps between simple motif components. We propose an efficient algorithm, called EXMOTIF, that given some sequence(s), and a structured motif template, extracts all frequent structured motifs that have quorum q. Potential applications of our method include the extraction of single/composite regulatory binding sites in DNA sequences. RESULTS: EXMOTIF is efficient in terms of both time and space and is shown empirically to outperform RISO, a state-of-the-art algorithm. It is also successful in finding potential single/composite transcription factor binding sites. CONCLUSION: EXMOTIF is a useful and efficient tool in discovering structured motifs, especially in DNA sequences. The algorithm is available as open-source at:
A structural comparison of human serum transferrin and human lactoferrin
The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences
The Impact of Local Genome Sequence on Defining Heterochromatin Domains
Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state
CRL4 antagonizes SCFFbxo7-mediated turnover of cereblon and BK channel to regulate learning and memory
Intellectual disability (ID), one of the most common human developmental disorders, can be caused by genetic mutations in Cullin 4B (Cul4B) and cereblon (CRBN). CRBN is a substrate receptor for the Cul4A/B-DDB1 ubiquitin ligase (CRL4) and can target voltage- and calcium-activated BK channel for ER retention. Here we report that ID-associated CRL4CRBNmutations abolish the interaction of the BK channel with CRL4, and redirect the BK channel to the SCFFbxo7ubiquitin ligase for proteasomal degradation. Glioma cell lines harbouring CRBN mutations record density-dependent decrease of BK currents, which can be restored by blocking Cullin ubiquitin ligase activity. Importantly, mice with neuron-specific deletion of DDB1 or CRBN express reduced BK protein levels in the brain, and exhibit similar impairment in learning and memory, a deficit that can be partially rescued by activating the BK channel. Our results reveal a competitive targeting of the BK channel by two ubiquitin ligases to achieve exquisite control of its stability, and support changes in neuronal excitability as a common pathogenic mechanism underlying CRL4CRBN–associated ID
Microhomology-mediated end joining drives complex rearrangements and overexpression of MYC and PVT1 in multiple myeloma
MYC is a widely acting transcription factor and its deregulation is a crucial event in many human cancers. MYC is important biologically and clinically in multiple myeloma, but the mechanisms underlying its dysregulation are poorly understood. We show that MYC rearrangements are present in 36.0% of newly diagnosed myeloma patients, as detected in the largest set of next generation sequencing data to date (n=1,267). Rearrangements were complex and associated with increased expression of MYC and PVT1, but not other genes at 8q24. The highest effect on gene expression was detected in cases where the MYC locus is juxtaposed next to super-enhancers associated with genes such as IGH, IGK, IGL, TXNDC5/BMP6, FAM46C and FOXO3. We identified three hotspots of recombination at 8q24, one of which is enriched for IGH-MYC translocations. Breakpoint analysis indicates primary myeloma rearrangements involving the IGH locus occur through non-homologous end joining, whereas secondary MYC rearrangements occur through microhomology-mediated end joining. This mechanism is different to lymphomas, where non-homologous end joining generates MYC rearrangements. Rearrangements resulted in overexpression of key genes and chromatin immunoprecipitation-sequencing identified that HK2, a member of the glucose metabolism pathway, is directly over-expressed through binding of MYC at its promoter
The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella
Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores
- …