1,183 research outputs found

    Static behaviour of functionally graded sandwich beams using a quasi-3D theory

    Get PDF
    This paper presents static behaviour of functionally graded (FG) sandwich beams by using a quasi-3D theory, which includes both shear deformation and thickness stretching effects. Various symmetric and non-symmetric sandwich beams with FG material in the core or skins under the uniformly distributed load are considered. Finite element model (FEM) and Navier solutions are developed to determine the displacement and stresses of FG sandwich beams for various power-law index, skin-core-skin thickness ratios and boundary conditions. Numerical results are compared with those predicted by other theories to show the effects of shear deformation and thickness stretching on displacement and stresses

    Time-varying Learning and Content Analytics via Sparse Factor Analysis

    Full text link
    We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learner's concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education

    A convenient, optimized pipeline for isolation, fluorescence microscopy and molecular analysis of live single cells

    Get PDF
    BACKGROUND: Heterogeneity within cell populations is relevant to the onset and progression of disease, as well as development and maintenance of homeostasis. Analysis and understanding of the roles of heterogeneity in biological systems require methods and technologies that are capable of single cell resolution. Single cell gene expression analysis by RT-qPCR is an established technique for identifying transcriptomic heterogeneity in cellular populations, but it generally requires specialized equipment or tedious manipulations for cell isolation. RESULTS: We describe the optimization of a simple, inexpensive and rapid pipeline which includes isolation and culture of live single cells as well as fluorescence microscopy and gene expression analysis of the same single cells by RT-qPCR. We characterize the efficiency of single cell isolation and demonstrate our method by identifying single GFP-expressing cells from a mixed population of GFP-positive and negative cells by correlating fluorescence microscopy and RT-qPCR. CONCLUSIONS: Single cell gene expression analysis by RT-qPCR is a convenient means for investigating cellular heterogeneity, but is most useful when correlating observations with additional measurements. We demonstrate a convenient and simple pipeline for multiplexing single cell RT-qPCR with fluorescence microscopy which is adaptable to other molecular analyses

    UTJECAJ UVJETA POSTUPKA DOBIVANJA MLJEVENE TROSKE TALJENJEM UGLJENA U VISOKOJ PEĆI UZ UPORABU GEOPOLIMERA

    Get PDF
    In this study, the material characterization of Vietnamese ground coal slag and ground granulated blast furnace slag (GGBFS), such as particle size distribution, chemical composition, bulk density and particle density are shown. The geopolymer specimens were prepared by mixing an 80 m/m% mass of solid materials (ground coal slag and GGBFS in a different ratio) with 20 m/m % of a 10M NaOH alkaline activator. A systematic experimental series was carried out in order to optimize the preparation process. In that series, the heat curing temperature was 60°C for 6 hours, and then selected specimens were heat treated at a high temperature (1000 °C) for 1 hour. After 7 days of ageing, the physical properties of the geopolymer (compressive strength, specimen density) were measured. Also, after 180 days of ageing, the pH values of water in the geopolymer leaching preparation were determined. The results show that the geopolymer can be used for refractory applications due to its good heat resistance properties. However, geopolymers that were heated at 1000 °C had lower compressive strength, specimen density and pH values of water containing the geopolymer than those that were cured at 60 °C.U ovome istraživanju donose se obilježja vijetnamskih granulata ugljene troske i troske željezne rude na osnovi njihove veličine, kemijskoga sastava i gustoće. Uzorci geopolimera pripremljeni su miješanjem 80 % m/m (mase otopljenoga / masa otopine) ugljene i željezne troske (u različitim omjerima) s 20 % m/m 10M NaOH kao alkalnoga aktivatora. Sustavnim serijama eksperimenata optimiziran je postupak pripreme, pri čemu je temperatura iznosila 60 °C tijekom 6 sati, nakon čega su odabrani uzorci zagrijavani 1 sat na 1000 °C. Nakon sljedećih 7 dana izmjerena su fizička svojstva geopolimera (tlačna čvrstoća, gustoća). Zatim je poslije 180 dana određena pH-vrijednost vode korištene u postupku ispiranja geopolimera. Rezultati su pokazali kako geopolimeri mogu biti korišteni za namjene u vatrostalnim uvjetima zahvaljujući toplinskim svojstvima. Također, geopolimeri koji su zagrijavani na 1000 °C imaju niže vrijednosti tlačne čvrstoće, gustoće i pH-vrijednosti vode u njima od onih koji su grijani na 60 °C

    A voltage electrical distance application for power system load shedding considering the primary and secondary generator controls

    Get PDF
    This paper proposes a method for determining location and calculating the minimum amount of power load needed to shed in order to recover the frequency back to the allowable range. Based on the consideration of the primary control of the turbine governor and the reserve power of the generators for secondary control, the minimum amount of load shedding was calculated in order to recover the frequency of the power system. Computation and analysis of the voltage electrical distance between the outage generator and the loads to prioritize distribution of the amount power load shedding at load bus positions. The nearer the load bus from the outage generator is, the higher the amount of load shedding will shed and vice versa. With this technique, a large amount of load shedding could be avoided, hence, saved from economic losses, and customer service interruption. The effectiveness of the proposed method tested on the IEEE 37 bus 9 generators power system standard has demonstrated the effectiveness of this method

    Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data

    Get PDF
    Semantic formalisms represent content in a uniform way according to ontologies. This enables manipulation and reasoning via automated means (e.g. Semantic Web services), but limits the user’s ability to explore the semantic data from a point of view that originates from knowledge representation motivations. We show how, for user consumption, a visualization of semantic data according to some easily graspable dimensions (e.g. space and time) provides effective sense-making of data. In this paper, we look holistically at the interaction between users and semantic data, and propose multiple visualization strategies and dynamic filters to support the exploration of semantic-rich data. We discuss a user evaluation and how interaction challenges could be overcome to create an effective user-centred framework for the visualization and manipulation of semantic data. The approach has been implemented and evaluated on a real company archive

    Static and vibration analysis of functionally graded beams using refined shear deformation theory

    Get PDF
    Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton's principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes

    The Complexity of Combinations of Qualitative Constraint Satisfaction Problems

    Full text link
    The CSP of a first-order theory TT is the problem of deciding for a given finite set SS of atomic formulas whether TST \cup S is satisfiable. Let T1T_1 and T2T_2 be two theories with countably infinite models and disjoint signatures. Nelson and Oppen presented conditions that imply decidability (or polynomial-time decidability) of CSP(T1T2)\mathrm{CSP}(T_1 \cup T_2) under the assumption that CSP(T1)\mathrm{CSP}(T_1) and CSP(T2)\mathrm{CSP}(T_2) are decidable (or polynomial-time decidable). We show that for a large class of ω\omega-categorical theories T1,T2T_1, T_2 the Nelson-Oppen conditions are not only sufficient, but also necessary for polynomial-time tractability of CSP(T1T2)\mathrm{CSP}(T_1 \cup T_2) (unless P=NP).Comment: Version 2: stronger main result with better presentation of the proof; multiple improvements in other proofs; new section structure; new example

    Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory

    Get PDF
    A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams
    corecore