81 research outputs found

    Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories

    Get PDF
    In spite of Carl Rabl's (1885) and Theodor Boveri's (1909) early hypothesis that chromosomes occupy discrete territories or domains within the interphase nucleus, evidence in favor pf this hypothesis has been limited and indirect so far in higher plants and animals. The alternative possibility that the chromatin fiber of single chromosomes might be extended throughout the major part of even the whole interphase nucleus has been considered for many years. In the latter case, chromosomes would only exist as discrete chromatin bodies during mitosis but not during interphase. Both possibilities are compatible with Boveri's well established paradigm of chromosome individuality. Here we show that an active human X chromosome contained as the only human chromosome in a Chinese hamster x man hybrid cell line can be visualized both in metaphse plates and in interphase nuclei after in situ hybridization with either 3H- or biotin-labeled human genomic DNA. We demonstrate that this chromosome is organized as a distinct chromatin body throughout interphase. In addition, evidence for the territorial organization of human chromosomes is also presented for another hybrid cell line containing several autosomes and the human X chromosome. These findings are discussed in the context of our present knowledge of the organization and topography of interphase chromosomes. General applications of a strategy aimed at specific staining of individual chromosomes in experimental and clinical cytogenetics are briefly considered

    Cue Reactivity in Active Pathological, Abstinent Pathological, and Regular Gamblers

    Get PDF
    Twenty-one treatment-seeking pathological gamblers, 21 pathological gamblers in recovery, and 21 recreational gamblers watched two video-taped exciting gambling scenarios and an exciting roller-coaster control scenario while their arousal (heart rate and subjective excitement) and urge to gamble were being measured. The gamblers did not differ significantly in cue-elicited heart rate elevations or excitement. However, the active pathological gamblers reported significantly greater urges to gamble across all cues compared to the abstinent pathological gamblers and, with marginal significance (p = 0.06), also compared to the social gamblers. Further exploration of these findings revealed that active pathological gamblers experience urges to gamble in response to exciting situations, whether or not they are gambling related, whereas abstinent and social gamblers only report urges to an exciting gambling-related cue. This suggests that for pathological gamblers excitement itself, irrespective of its source, may become a conditioned stimulus capable of triggering gambling behavior. Implications for treatment and future research are discussed

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Letter

    No full text
    • 

    corecore