59 research outputs found

    Neutrino mediated muon--electron conversion in nuclei revisited

    Get PDF
    The non-photonic neutrino exchange mechanism of the lepton flavor violating muon-electron conversion in nuclei is revisited. First we determine the nucleon coupling constants for the neutrino exchange mechanism in a relativistic quark model taking into account quark confinement and chiral symmetry requirements. This includes a new, previously overlooked tree-level contribution from neutrino exchange between two quarks in the same nucleon. Then for the case of an additional sterile neutrino we reconsider the coherent mode of this process. The presence of a mixed sterile-active neutrino state heavier than the quark confinement scale Lambda_c (~1 GeV) may significantly improve the prospects for observation of this process in future experiments as compared to the conventional scenario with only light neutrinos. Turning the arguments around we derive new experimental constraints on |U_(mu h)| and |U_(e h)| mixing matrix elements from the non-observation of muon--electron conversion.Comment: 13 pages, RevTex, 1 Postscript figur

    Dibucaine Mitigates Spreading Depolarization in Human Neocortical Slices and Prevents Acute Dendritic Injury in the Ischemic Rodent Neocortex

    Get PDF
    Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on the complete abolishment of spreading depolarizations

    Complex SUMO-1 Regulation of Cardiac Transcription Factor Nkx2-5

    Get PDF
    Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51) of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R) does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a “shifting” site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity

    A Survey of Experimental Research on Contests, All-Pay Auctions and Tournaments

    Get PDF
    Many economic, political and social environments can be described as contests in which agents exert costly efforts while competing over the distribution of a scarce resource. These environments have been studied using Tullock contests, all-pay auctions and rankorder tournaments. This survey provides a review of experimental research on these three canonical contests. First, we review studies investigating the basic structure of contests, including the contest success function, number of players and prizes, spillovers and externalities, heterogeneity, and incomplete information. Second, we discuss dynamic contests and multi-battle contests. Then we review research on sabotage, feedback, bias, collusion, alliances, and contests between groups, as well as real-effort and field experiments. Finally, we discuss applications of contests to the study of legal systems, political competition, war, conflict avoidance, sales, and charities, and suggest directions for future research. (author's abstract
    corecore