108 research outputs found

    Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    Get PDF
    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation

    Macrosegregation During Dendritic Arrayed Growth of Hypoeutectic Pb-Sn Alloys: Influence of Primary Arm Spacing and Mushy Zone Length

    Get PDF
    Thermosolutal convection in the dendritic mushy zone occurs during directional solidification of hypoeutectic lead tin alloys in a positive thermal gradient, with the melt on the top and the solid below. This results in macrosegregation along the length of the solidified samples. The extent of macrosegregation increases with increasing primary dendrite spacings for constant mushy zone length. For constant primary spacings, the macrosegregation increases with decreasing mushy zone length. Presence of convection reduces the primary dendrite spacings. However, convection in the interdendritic melt has significantly more influence on the spacings as compared with that in the overlying melt, which is caused by the solutal buildup at the dendrite tips

    Macrosegregation Caused by Thermosolutal Convection During Directional Solidification of Pb-Sb Alloys

    Get PDF
    Pb-2.2 and 5.8 wt pet Sb alloys were directionally solidified with a positive thermal gradient of 140 K cm(-1) at growth speeds ranging from 0.8 to 30 mu m s(-1), and then quenched to retain the mushy-zone morphology. Chemical analysis along the length of the directionally solidified portion and in the quenched melt ahead of the dendritic array showed extensive longitudinal macrosegregation, Cellular morphologies growing at smaller growth speeds are associated with larger amounts of macrosegregation as compared with the dendrites growing at higher growth speeds. Convection is caused, mainly, by the density inversion in the overlying melt ahead of the cellular/dendritic array because of the antimony enrichment at the array tip. Mixing of the interdendritic and bulk melt during directional solidification is responsible for the observed longitudinal macrosegregation

    Mushy-Zone Rayleigh Number to Describe Macrosegregation and Channel Segregate Formation During Directional Solidification of Metallic Alloys

    Get PDF
    A recently defined mushy-zone Rayleigh number (R-aM) that includes side-branching contributions to the mushy-zone permeability has been examined for its correlation with the longitudinal macrosegregation and channel segregate formation. The Rayleigh number shows (1) a strong correlation between the extent of longitudinal macrosegregation and increase in the mushy-zone convection and (2) a good ability to predict the formation of channel segregates during directional solidification

    Mushy Zone Morphology During Directional Solidification of Pb-5.8 Wt Pct Sb Alloy

    Get PDF
    The Pb-5.8 wt pet Sb alloy was directionally solidified with a positive thermal gradient of 140 K cm(-1) at a growth speed ranging from 0.8 to 30 mu m s(-1), and then it was quenched to retain the mushy zone morphology. The morphology of the mushy zone along its entire length has been characterized by using a serial sectioning and three-dimensional image reconstruction technique. Variation in the cellular/dendritic shape factor, hydraulic radius of the interdendritic region, and fraction solid along the mushy zone length has been studied. A comparison with predictions from theoretical models indicates that convection remarkably reduces the primary dendrite spacing while its influence on the dendrite tip radius is not as significant

    Effect of Magnetic-Field on the Microstructure and Macrosegregation in Directionally Solidified Pb-Sn Alloys

    Get PDF
    An investigation into the influence of a transverse magnetic field (0.45 T) on the mushy zone morphology and macrosegregation in directionally solidified hypoeutectic Pb-Sn alloy shows that the field has no influence on the morphology of dendritic arrays. The field does, however, cause severe distortion in the cellular array morphology. Cellular arrayed growth with the magnetic field results in an extensive channel formation in the mushy zone, as opposed to the well-aligned and uniformly distributed cells formed in the absence of the field. The channels are produced due to the anisotropy in the thermosolutal convection caused by the magnetic field. Macrosegregation, however, along the length of the directionally solidified samples is not influenced by this magnetic field for either the cellular or dendritic arrays

    Time Dependence of Tip Morphology during Cellular/Dendritic Arrayed Growth

    Get PDF
    Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 X 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the 'wall effects', which are present during growth in the generally used thin (about 200 gm) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules

    Influence of Fabrication Technique on the Fiber Pushout Behavior in a Sapphire-Reinforced Nial Matrix Composite

    Get PDF
    Directional solidification (DS) of \u27\u27powder-cloth\u27\u27 (PC) processed sapphire-NiAl composites was carried out to examine the influence of fabrication technique on the fiber-matrix interfacial shear strength, measured using a fiber-pushout technique. The DS process replaced the fine, equiaxed NiAl grain structure of the PC composites with an oriented grain structure comprised of large columnar NiAl grains aligned parallel to the fiber axis, with fibers either completely engulfed within the NiAl grains or anchored at one to three grain boundaries. The load-displacement behavior during the pushout test exhibited an initial \u27\u27pseudoelastic\u27\u27 response, followed by an \u27\u27inelastic\u27\u27 response, and finally a \u27\u27frictional\u27\u27 sliding response. The fiber-matrix interfacial shear strength and the fracture behavior during fiber pushout were investigated using an interrupted pushout test and fractography, as functions of specimen thickness (240 to 730 mu m) and fabrication technique. The composites fabricated using the PC and the DS techniques had different matrix and interface structures and appreciably different interfacial shear strengths. In the DS composites, where the fiber-matrix interfaces were identical for all the fibers, the interfacial debond shear stresses were larger for the fibers embedded completely within the NiAl grains and smaller for the fibers anchored at a few grain boundaries. The matrix grain boundaries coincident on sapphire fibers were observed to be the preferred sites for crack formation and propagation. While the frictional sliding stress appeared to be independent of the fabrication technique, the interfacial debond shear stresses were larger for the DS composites compared to the PC composites. The study highlights the potential of the DS technique to grow single-crystal NiAl matrix composites reinforced with sapphire fibers, with fiber-matrix interfacial shear strength appreciably greater than that attainable by the current solid-state fabrication techniques

    The Effect of Convection on Disorder in Primary Cellular and Dendritic Arrays

    Get PDF
    Directional solidification studies have been carried out to characterize the spatial disorder in the arrays of cells and dendrites. Different factors that cause array disorder are investigated experimentally and analyzed numerically. In addition to the disorder resulting from the fundamental selection of a range of primary spacings under given experimental conditions, a significant variation in primary spacings is shown to occur in bulk samples due to convection effects, especially at low growth velocities. The effect of convection on array disorder is examined through directional solidification studies in two different alloy systems, Pb-Sn and Al-Cu. A detailed analysis of the spacing distribution is carried out, which shows that the disorder in the spacing distribution is greater in the Al-Cu system than in Pb-Sn system. Numerical models are developed which show that fluid motion can occur in both these systems due to the negative axial density gradient or due the radial temperature gradient which is always present in Bridgman growth. The modes of convection have been found to be significantly different in these systems, due to the solute being heavier than the solvent in the Al-Cu system and lighter than it in the Pb-Sn system. The results of the model have been shown to explain experimental observations of higher disorder and greater solute segregation in a weakly convective Al-Cu system than those in a highly convective Pb-Sn system

    Primary Dendrite Distribution and Disorder During Directional Solidification of Pb-Sb Alloys

    Get PDF
    Pb-2.2 wt pct Sb and Pb-5.8 wt pet Sb alloys have been directionally solidified from a single-crystal seed with its [100] orientation parallel to the growth direction, to examine the primary dendrite distribution and disorder of the dendrite arrays. The dendrite distribution and ordering have been investigated using analysis techniques such as the Gauss-amplitude fit to the frequency distribution of nearest and higher-order spacings, minimum spanning tree (MST), Voronoi polygon, and Fourier transform (FT) of the dendrite centers. Since the arrangement of dendrites is driven by the requirement to accommodate side-branch growth along the (100) directions, the FT images of the fully developed dendrite centers contain spots which indicate this preferred alignment. A directional solidification distance of about three mushy-zone lengths is sufficient to ensure a steady-state dendritic array, in terms of reaching a constant mean primary spacing. However, local dendrite ordering continues throughout the directional solidification process. The interdendritic convection not only decreases the mean primary spacing, it also makes the dendrite array more disordered and reduces the ratio of the upper and lower spacing limits, as defined by the largest 5 pct and the smallest 5 pct of the population
    • …
    corecore