15 research outputs found

    Author Correction: c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis

    Get PDF
    Correction to: Nature Metabolism https://doi.org/10.1038/s42255-020-00306-2, published online 9 November 2020. In the version of this article initially published, in the ×40 diseased human kidney images in Supplementary Fig. 1, the FSGS image duplicated the DN image. The error has been corrected in the HTML version of the article

    c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis

    Get PDF
    Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-β1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in RelΔLysM mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel–Pfkfb3 axis has potential for therapeutic applications in fibrotic disease

    Tissue damage from neutrophil-induced oxidative stress in COVID-19

    No full text
    International audienceThe high neutrophil to lymphocyte ratio observed in critically ill patients with COVID-19 is associated with excessive levels of reactive oxygen species (ROS), which promote a cascade of biological events that drive pathological host responses. ROS induce tissue damage, thrombosis and red blood cell dysfunction, which contribute to COVID-19 disease severity. We suggest that free radical scavengers could be beneficial for the most vulnerable patients
    corecore