389 research outputs found
Amplified spontaneous emission in short-pulse excimer amplifiers.
We have found a simple analytical expression which describes the relation between amplified spontaneous emission (ASE) and small-signal gain in short-pulse amplifiers. It is also shown that the contrast of the short pulse to the ASE is weakly dependent on the saturation of the ASE, and influenced mainly by the saturation of the short pulse. The theoretical considerations were verified by measurements
Relativistic Doppler effect: universal spectra and zeptosecond pulses
We report on a numerical observation of the train of zeptosecond pulses
produced by reflection of a relativistically intense femtosecond laser pulse
from the oscillating boundary of an overdense plasma because of the Doppler
effect. These pulses promise to become a unique experimental and technological
tool since their length is of the order of the Bohr radius and the intensity is
extremely high W/cm. We present the physical mechanism,
analytical theory, and direct particle-in-cell simulations. We show that the
harmonic spectrum is universal: the intensity of th harmonic scales as
for , where is the largest --factor
of the electron fluid boundary, and for the broadband and
quasimonochromatic laser pulses respectively.Comment: 4 figure
Report of the 2005 Snowmass Top/QCD Working Group
This report discusses several topics in both top quark physics and QCD at an
International Linear Collider (ILC). Issues such as measurements at the
threshold, including both theoretical and machine requirements, and
the determination of electroweak top quark couplings, are reviewed. New results
concerning the potential of a 500 GeV collider for measuring
couplings and the top quark Yukawa coupling are presented. The status of higher
order QCD corrections to jet production cross sections, heavy quark form
factors, and longitudinal gauge boson scattering, needed for percent-level
studies at the ILC, are reviewed. A new study of the measurement of the
hadronic structure of the photon at a collider is presented. The
effects on top quark properties from several models of new physics, including
composite models, Little Higgs theories, and CPT violation, are studied.Comment: 39 pages, many figs; typos fixed and refs added. Contributed to the
2005 International Linear Collider Physics and Detector Workshop and 2nd ILC
Accelerator Workshop, Snowmass, Colorado, 14-27 Aug 200
Steady State of microemulsions in shear flow
Steady-state properties of microemulsions in shear flow are studied in the
context of a Ginzburg-Landau free-energy approach. Explicit expressions are
given for the structure factor and the time correlation function at the one
loop level of approximation. Our results predict a four-peak pattern for the
structure factor, implying the simultaneous presence of interfaces aligned with
two different orientations.
Due to the peculiar interface structure a non-monotonous relaxation of the
time correlator is also found.Comment: 5 pages, 3 figure
Recommended from our members
Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas
An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L 0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme
Theory of laser ion acceleration from a foil target of nanometers
A theory for laser ion acceleration is presented to evaluate the maximum ion
energy in the interaction of ultrahigh contrast (UHC) intense laser with a
nanometer-scale foil. In this regime the energy of ions may be directly related
to the laser intensity and subsequent electron dynamics. This leads to a simple
analytical expression for the ion energy gain under the laser irradiation of
thin targets. Significantly, higher energies for thin targets than for thicker
targets are predicted. Theory is concretized to the details of recent
experiments which may find its way to compare with these results.Comment: 22 pages 7 figures. will be submitted to NJ
Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas
The hard x-ray emission in the energy range of 30-300 keV from copper plasmas
produced by 100 fs, 806 nm laser pulses at intensities in the range of
10 W cm is investigated. We demonstrate that surface
roughness of the targets overrides the role of polarization state in the
coupling of light to the plasma. We further show that surface roughness has a
significant role in enhancing the x-ray emission in the above mentioned energy
range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
The colour dipole approach to small-x processes
We explain why it is possible to formulate a wide variety of high energy
(small-x) photon-proton processes in terms of a universal dipole cross section
and compare and contrast various parameterizations of this function that exist
in the literature.Comment: 6 pages, latex, 2 figures. Contribution to Durham Collider Workshop
(Sept 99) proceeding
- …