109 research outputs found

    The relational XQuery puzzle: a look-back on the pieces found so far

    Get PDF
    Given the tremendous versatility of relational database implementations toward awide range of database problems, it seems only natural to consider them as back-ends for XML data processing. Yet, the assumptions behind the language XQuery are considerably different to those in traditional RDBMSs. The underlying data model is a tree, data and results carry an intrinsic order, queries are described using explicit iteration and, after all, problems are everything else but regular. Solving the relational XQuery puzzle, therefore, has challenged anumber of research groups over the past years. The purpose of this article is to summarize and assess some of the results that have been obtained during this period to solve the puzzle. Our main focus is on the Pathfinder XQuery compiler, afull reference implementation of apurely relational XQuery processor. As we dissect its components, we relate them to other work in the field and also point to open problems and limitations in the context of relational XQuery processin

    Scalable XQuery type matching

    Get PDF
    XML Schema awareness has been an integral part of the XQuery language since its early design stages. Matching XML data against XML types is the main operation that backs up XQuery type expressions, such as typeswitch, instance of, or certain XPath operators. This interaction is particularly vital in data-centric XQuery applications, where data come with detailed type information from an XML Schema document. So far there has been little work on the optimization of those operations. This work presents an efficient implementation of the runtime aspects of XML Schema support. We propose type ranks as a novel and uniform way to implement all facets of type matching in the W3C XQuery Recommendation. As a concise encoding of the type hierarchy defined by an XML Schema document, type ranks minimize the cost of checking the runtime type of XQuery singleton items. By aggregating type ranks, we leverage the grouping capabilities of modern DBMS implementations to efficiently execute type matching on XQuery sequences. In addition, we improve the complexity bounds incurring with typeswitch expressions over existing approaches. Experiments on an off-the-shelf database system demonstrate the potential of our approach

    An Injection with Tree Awareness: Adding Staircase Join to PostgreSQL

    Get PDF
    The syntactic wellformedness constraints of XML (opening and closing tags nest properly) imply that XML processors face the challenge to efficiently handle data that takes the shape of ordered, unranked trees. Although RDBMSs have originally been designed to manage table-shaped data, we propose their use as XML and XPath processors. In our setup, the database system employs a relational XML document encoding, the XPath accelerator [1], which maps information about the XML node hierarchy to a table, thus making it possible to evaluate XPath expressions on SQL hosts.\ud \ud Conventional RDBMSs, nevertheless, remain ignorant of many interesting properties of the encoded tree data, and were thus found to make no or poor use of these properties. This is why we devised a new join algorithm, staircase join [2], which incorporates the tree-specific knowledge required for an efficient SQL-based evaluation of XPath expressions. In a sense, this demonstration delivers the promise we have made at VLDB 2003 [2]: a notion of tree awareness can be injected into a conventional disk-based RDBMS kernel in terms of staircase join. The demonstration features a side-by-side comparison of both, an original and a staircase-join enhanced instance of PostgreSQL [4]. The required changes to\ud PostgreSQL were local, the achieved eect, however, is significant: the demonstration proves that this injection of tree awareness turns PostgreSQL into a high-performance XML processor that closely adheres to the XPath semantics

    An Inflationary Fixed Point Operator in XQuery

    Full text link
    We introduce a controlled form of recursion in XQuery, inflationary fixed points, familiar in the context of relational databases. This imposes restrictions on the expressible types of recursion, but we show that inflationary fixed points nevertheless are sufficiently versatile to capture a wide range of interesting use cases, including the semantics of Regular XPath and its core transitive closure construct. While the optimization of general user-defined recursive functions in XQuery appears elusive, we will describe how inflationary fixed points can be efficiently evaluated, provided that the recursive XQuery expressions exhibit a distributivity property. We show how distributivity can be assessed both, syntactically and algebraically, and provide experimental evidence that XQuery processors can substantially benefit during inflationary fixed point evaluation.Comment: 11 pages, 10 figures, 2 table

    Low-latency handshake join

    Full text link

    Pathfinder: XQuery - The Relational Way

    Get PDF
    Relational query processors are probably the best understood (as well as the best engineered) query engines available today. Although carefully tuned to process instances of the relational model (tables of tuples), these processors can also provide a foundation for the evaluation of "alien" (non-relational) query languages: if a relational encoding of the alien data model and its associated query language is given, the RDBMS may act like a special-purpose processor for the new language

    MonetDB/XQuery - Consistent & Efficient Updates on the Pre/Post Plane

    Get PDF
    Relational XQuery processors aim at leveraging mature relational DBMS query processing technology to provide scalability and efficiency. To achieve this goal, various storage schemes have been proposed to encode the tree structure of XML documents in flat relational tables. Basically, two classes can be identified: (1) encodings using fixed-length surrogates, like the preorder ranks in the pre/post encoding [5] or the equivalent pre/size/level encoding [8], and (2) encodings using variable-length surrogates, like, e.g., ORDPATH [9] or P-PBiTree [12]. Recent research [1] showed a clear advantage of the former for efficient evaluation of XPath location steps, exploiting techniques like cheap node order tests, positional lookup, and node skipping in staircase join [7]. However, once updates are involved, variable-length surrogates are often considered the better choice, mainly as a straightforward implementation of structural XML updates using fixed-length surrogates faces two performance bottlenecks: (i) high physical cost (the preorder ranks of all nodes following the update position must be modified—on average 50% of the document), and (ii) low transaction concurrency (updating the size of all ancestor nodes causes lock contention on the document root)

    Communication Awareness

    Get PDF

    Pathfinder: relational XQuery over multi-gigabyte XML inputs in interactive time

    Get PDF
    Using a relational DBMS as back-end engine for an XQuery processing system leverages relational query optimization and scalable query processing strategies provided by mature DBMS engines in the XML domain. Though a lot of theoretical work has been done in this area and various solutions have been proposed, no complete systems have been made available so far to give the practical evidence that this is a viable approach. In this paper, we describe the ourely relational XQuery processor Pathfinder that has been built on top of the extensible RDBMS MonetDB. Performance results indicate that the system is capable of evaluating XQuery queries efficiently, even if the input XML documents become huge. We additionally present further contributions such as loop-lifted staircase join, techniques to derive order properties and to reduce sorting effort in the generated relational algebra plans, as well as methods for optimizing XQuery joins, which, taken together, enabled us to reach our performance and scalability goal

    Spinning Relations: High-Speed Networks for Distributed Join Processing

    Get PDF
    By leveraging modern networking hardware (RDMA-enabled network cards), we can shift priorities in distributed database processing significantly. Complex and sophisticated mechanisms to avoid network traffic can be replaced by a scheme that takes advantag
    corecore