130 research outputs found

    Characterization of GaN Nanorods Fabricated Using Ni Nanomasking and Reactive Ion Etching: A Top-Down Approach

    Get PDF
    Large thermal mismatch between GaN surface and sapphire results in compressive stress in Gallium Nitride (GaN) layer which degrades the device performance. Nanostructuring the GaN can reduce this stress leading to reduction in Quantum Confined Stark Effect. Aligned GaN nanorods based nanodevices have potential applications in electronics and optoelectronics. This paper describes the fabrication of GaN nanorods using Ni nanomasking and reactive ion etching. The morphology of GaN nanorods was studied by field emission scanning electron microscopy. The optical properties of GaN nanorods were studied by Cathodoluminescence (CL) spectroscopy. CL results revealed the existence of characteristic band-edge luminescence and yellow band luminescence. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3099

    Optical Properties and Modal Gain of InGaN Quantum Dot Stacks

    Full text link
    We present investigations of the optical properties of stacked InGaN quantum dot layers and demonstrate their advantage over single quantum dot layer structures. Measurements were performed on structures containing a single layer with quantum dots or threefold stacked quantum dot layers, respectively. A superlinear increase of the quantum dot related photoluminescence is detected with increasing number of quantum dot layers while other relevant GaN related spectral features are much less intensive when compared to the photoluminescence of a single quantum dot layer. The quantum dot character of the active material is verified by microphotoluminescence experiments at different temperatures. For the possible integration within optical devices in the future the threshold power density was investigated as well as the modal gain by using the variable stripe length method.Comment: 9 Pages, 4 Figure

    Phasenseparation von dünnen InGaN-Schichten in der metallorganischen Gasphasenepitaxie - Realisierung und Anwendung von InGaN Quantenpunkten

    Get PDF
    This work is devoted to the understanding and realization of the InGaN quantum dot formation process. The growth is performed on an n-doped GaN layer in a metal organic vapor phase epitaxy reactor. Evidence has been found that spinodal and binodal decomposition are driving a separation process of a thin InGaN layer into two phases with different InN concentrations. The region with low InN content is forming the quantum dots on the surface of a GaN layer. The spinodal phase diagram has been calculated for the case of a strained InGaN layer on GaN. The accordance between theoretical and experimental results is shown. For device application it is necessary to cap these structures with a p-doped GaN layer. The influence of a GaN capping on the phase separated InGaN structures is discussed. Finally, the applications of InGaN quantum dots in LEDs, laser structures and microcavities is presented

    The Supera Interwoven Nitinol Stent as a Flow Diverting Device in Popliteal Aneurysms

    Get PDF
    PURPOSE: The feasibility of using a compressed interwoven Supera stent as a flow diverting device for popliteal aneurysms was recently demonstrated in patients. It is unclear, however, what the optimal flow diverting strategy is, because of the fusiform shape of popliteal aneurysms and their exposure to triphasic flow. To assess this flow diverting strategy for popliteal aneurysms, flow profiles and thrombus formation likelihood were investigated in popliteal aneurysm models. MATERIALS AND METHODS: Six popliteal aneurysm models were created and integrated into a pulsatile flow set-up. These models covered a bent and a straight anatomy in three configurations: control, single-lined and dual-lined Supera stents. Two-dimensional flow velocities were visualized by laser particle image velocimetry. In addition, the efficacy of the stent configurations for promoting aneurysm thrombosis was assessed by simulations of residence time and platelet activation. RESULTS: On average for the two anatomies, the Supera stent led to a twofold reduction of velocities in the aneurysm for single-lined stents, and a fourfold reduction for dual-lined stents. Forward flow was optimally diverted, whereas backward flow was generally deflected into the aneurysm. The dual-lined configuration led to residence times of 15–20 s, compared to 5–15 s for the single stent configurations. Platelet activation potential was not increased by the flow diverting stents. CONCLUSION: A compressed Supera stent was successfully able to divert flow in a popliteal aneurysm phantom. A dual-lined configuration demonstrated superior hemodynamic characteristics compared to its single-lined counterpart. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00270-022-03118-x

    Carrier induced refractive index change observed by a whispering gallery mode shift in GaN microrods

    Get PDF
    Vertical oriented GaNmicrorods were grown by metal organic vapor phase epitaxy with four different n type carrier concentration sections above 1019 cm amp; 8722;3 along the c axis. In cathodoluminescence investigations carried out on each section of the microrod, whispering gallery modes can be observed due to the hexagonal symmetry. Comparisons of the spectral positions of the modes from each section show the presence of an energy dependent mode shift, which suggest a carrier induced refractive index change. The shift of the high energy edge of the near band edge emission points out that the band gap parameter in the analytical expression of the refractive index has to be modified. A proper adjustment of the band gap parameter explains the observed whispering gallery mode shif

    Growth mechanisms of GaN microrods for 3D core-shell LEDs: The influence of silane flow

    Get PDF
    The three dimensional growth of GaN structures as a basis for the fabrication of 3D GaN core-shell LEDs has attracted substantial attention in the past years. GaN nanorods or microrods with high aspect ratios can be grown by selective area epitaxy on a GaN buffer through a SiOx mask. It has been found earlier that silane substantially initiates vertical growth, with the exact underlying mechanisms being still unclear. Here, the influence of silane on the 3D GaN column growth was investigated by performing detailed growth experiments in combination with a thorough surface analysis in order to get insight into these mechanisms. The vertical growth rate is significantly enhanced by high silane fluxes, whereas the saturation of growth rate with the time is reduced. Thus, homogenous GaN columns with an aspect ratio of more than 35 could be achieved. A thin Si-rich layer on the non-polar m-plane facets of the columns has been detected using a combination of transmission electron microscopy, energy dispersive X-ray spectroscopy and Auger electron spectroscopy. This layer is suggested to be the reason for the increase in growth rate, modifying the effective collection range of the species along the sidewalls, and preventing the lateral growth

    Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities

    Get PDF
    Microcavities based on group-III nitride material offer a notable platform for the investigation of light-matter interactions as well as the development of devices such as high efficiency light emitting diodes (LEDs) and low-threshold nanolasers. Disk or tube geometries in particular are attractive for low-threshold lasing applications due to their ability to support high finesse whispering gallery modes (WGMs) and small modal volumes. In this article we present the fabrication of homogenous and dense arrays of axial InGaN/GaN nanotubes via a combination of displacement Talbot lithography (DTL) for patterning and inductively coupled plasma top-down dry-etching. Optical characterization highlights the homogeneous emission from nanotube structures. Power-dependent continuous excitation reveals a non-uniform light distribution within a single nanotube, with vertical confinement between the bottom and top facets, and radial confinement within the active region. Finite-difference time-domain simulations, taking into account the particular shape of the outer diameter, indicate that the cavity mode of a single nanotube has a mixed WGM-vertical Fabry-Perot mode (FPM) nature. Additional simulations demonstrate that the improvement of the shape symmetry and dimensions primarily influence the Q-factor of the WGMs whereas the position of the active region impacts the coupling efficiency with one or a family of vertical FPMs. These results show that regular arrays of axial InGaN/GaN nanotubes can be achieved via a low-cost, fast and large-scale process based on DTL and top-down etching. These techniques open a new perspective for cost effective fabrication of nano-LED and nano-laser structures along with bio-chemical sensing applications

    Pancreatectomy for metastasis to the pancreas from colorectal cancer and reconstruction of superior mesenteric vein: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Tumors of the pancreatic head can infiltrate the superior mesenteric vein. In such cases, the deep veins of the lower limbs can serve as suitable autologous conduits for superior mesenteric vein reconstruction after its resection. Few data exist, however, describing the technique and the immediate patency of such reconstruction.</p> <p>Case report</p> <p>We present the case of a 70-year-old Caucasian man with a metachronous metastasis of colon cancer and infiltration of the uncinate pancreatic process, on the anterior surface of which the tumor was located. <it>En bloc </it>resection of the tumor was performed with resection of the superior mesenteric vein and reconstruction. A 10 cm segment of the superficial femoral vein was harvested for the reconstruction. The superficial femoral vein segment was inter-positioned in an end-to-end fashion. The post-operative conduit patency was documented ultrasonographically immediately post-operatively and after a six-month period. The vein donor limb presented subtle signs of post-operative venous hypertension with edema, which was managed with compression stockings and led to significant improvement after six months.</p> <p>Conclusion</p> <p>In cases of exploratory laparotomies with high clinical suspicion of pancreatic involvement, the potential need for vascular reconstruction dictates the preparation for leg vein harvest in advance. The superficial femoral vein provides a suitable conduit for the reconstruction of the superior mesenteric vein. This report supports the uncomplicated nature of this technique, since few data exist about this type of reconstruction.</p

    Results of the ANCHOR prospective, multicenter registry of EndoAnchors for type Ia endoleaks and endograft migration in patients with challenging anatomy

    Get PDF
    ObjectiveProximal attachment site complications continue to occur after endovascular repair of abdominal aortic aneurysms (EVAR), specifically type Ia endoleak and endograft migration. EndoAnchors (Aptus Endosystems, Sunnyvale, Calif) were designed to enhance endograft proximal fixation and sealing, and the current study was undertaken to evaluate the potential benefit of this treatment.MethodsDuring the 23-month period ending in December 2013, 319 subjects were enrolled at 43 sites in the United States and Europe. EndoAnchors were implanted in 242 patients (75.9%) at the time of an initial EVAR procedure (primary arm) and in 77 patients with an existing endograft and proximal aortic neck complications (revision arm). Technical success was defined as deployment of the desired number of EndoAnchors, adequate penetration of the vessel wall, and absence of EndoAnchor fracture. Procedural success was defined as technical success without a type Ia endoleak at completion angiography. Values are expressed as mean ± standard deviation and interquartile range.ResultsThe 238 male (74.6%) and 81 female (25.4%) subjects had a mean age of 74.1 ± 8.2 years. Aneurysms averaged 58 ± 13 (51-63) mm in diameter at the time of EndoAnchor implantation (core laboratory measurements). The proximal aortic neck averaged 16 ± 13 (7-23) mm in length (42.7% <10 mm and 42.7% conical) and 27 ± 4 mm (25-30 mm) in diameter; infrarenal neck angulation was 24 ± 15 (13-34) degrees. The number of EndoAnchors deployed was 5.8 ± 2.1 (4-7). Technical success was achieved in 303 patients (95.0%) and procedural success in 279 patients (87.5%), 217 of 240 (89.7%) and 62 of 77 (80.5%) in the primary and revision arms, respectively. There were 29 residual type Ia endoleaks (9.1%) at the end of the procedure. During mean follow-up of 9.3 ± 4.7 months, 301 patients (94.4%) were free from secondary procedures. Among the 18 secondary procedures, eight were performed for residual type Ia endoleaks and the others were unrelated to EndoAnchors. There were no open surgical conversions, there were no aneurysm-related deaths, and no aneurysm ruptured during follow-up.ConclusionsUse of EndoAnchors to treat existing and acute type Ia endoleaks and endograft migration was successful in most cases. Prophylactic use of EndoAnchors in patients with hostile aortic neck anatomy appears promising, but definitive conclusions must await longer term follow-up data

    Phase separation of thin InGaN layers by metal-organic vapor phase epitaxy - realization and application of InGaN quantum dots

    No full text
    This work is devoted to the understanding and realization of the InGaN quantum dot formation process. The growth is performed on an n-doped GaN layer in a metal organic vapor phase epitaxy reactor. Evidence has been found that spinodal and binodal decomposition are driving a separation process of a thin InGaN layer into two phases with different InN concentrations. The region with low InN content is forming the quantum dots on the surface of a GaN layer. The spinodal phase diagram has been calculated for the case of a strained InGaN layer on GaN. The accordance between theoretical and experimental results is shown. For device application it is necessary to cap these structures with a p-doped GaN layer. The influence of a GaN capping on the phase separated InGaN structures is discussed. Finally, the applications of InGaN quantum dots in LEDs, laser structures and microcavities is presented
    corecore