11 research outputs found
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
The RAD51D E233G variant and breast cancer risk: population-based and clinic based family studies of Australian women
RAD51D is a homolog of the RAD51 protein, which is known to be an important component of the DNA repair pathway. A rare missense variant in the RAD51D gene, E233G (c.A > G), has been reported to be more prevalent in breast cancer cases from specific multiple-case breast cancer families, with an odds ratio of 2.6 (95% confidence interval (CI): 1.12-6.03). We assessed whether this variant was associated with breast cancer risk using two studies: a population-based case-control-family study based on 1,110 cases and 629 controls, and a clinic-based study based on 390 cases from multiple-case breast cancer families. We conducted case-control analyses and modified segregation analyses of carrier families. The carrier frequencies (95% CI) of the RAD51D variant were 4.1% (2.4-6.6) for clinic-based cases, 3.9% (2.8-5.2) for population-based cases, and 3.7% (2.3-5.4) for population-based controls, and were not significantly higher in case groups than controls (P = 0.7 and P = 0.8, respectively). After genotyping the relatives of cases who carried the variant, modified segregation analyses of these families were conducted, and the estimated hazard ratio for breast cancer corresponding to the E233G variant was 1.30 (95% CI: 0.66-2.58; P = 0.4) for familial breast cancer families and 1.28 (95% CI: 0.47-3.43; P = 0.6) for families unselected for family history. Therefore, despite being well powered to detect moderate risks, no evidence for an association between the E233G variant and breast cancer risk was observed in any setting. Larger studies would be required to determine if this variant is associated with a smaller risk of breast cancer
BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Recommended from our members
BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers.
The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-) (6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Recommended from our members
BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers.
BackgroundThe K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.MethodsUsing weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.ResultsThe K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-) (6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.ConclusionsOur study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
BRCA2 Polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Q1Q1Artículo Original1-10Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with
small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic
mutations might account for this association. There is scant information about the effect of K3326X in other hormonerelated cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case
patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant
carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a
pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with
breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10-6) and invasive ovarian
cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for
estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76,
P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X
variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No
association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian
cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological
mechanism of action responsible for these associations
BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers
Background: The K3326X variant in BRCA2 (BRCA2∗c.9976A>T p.Lys3326∗rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormonerelated cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76637 cancer case patients and 83796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9×10-6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8×10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4×10-5 and ORw = 1.50, 95% CI = 1.28 t
BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers
To access publisher's full text version of this article click on the hyperlink at the bottom of the pageGovernment of Canada through Genome Canada
Canadian Institutes of Health Research
Ministere de l'Economie, de l'Innovation et des Exportations du Quebec through Genome Quebec
National Health and Medical Research Council (NHMRC) Senior Research Fellowship
Australian NHMRC Project
1010719
National Institutes of Health (NIH)
CA128978
CA116167
NIH specialized program of research excellence in breast cancer
P50 CA116201
Breast Cancer Research Foundation
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) data management and analysis through Cancer Research-UK grant
C12292/A11174
Cancer Research UK
C1287/A10118
C1287/A12014
C1287/A 10710
C12292/ A11174
C1281/A12014
C5047/A8384
C5047/A15007
C5047/ A10692
C8197/A16565
European Community's Seventh Framework Programme
223175 (HEALTH-F2-2009-223175)
European Union COST programme
BM0606
Ovarian Cancer Research Fund
PPD/RPCI.07
US National Cancer Institute Genetic Associations and Mechanisms in Oncology (GAME-ON) Post-Genome Wide Association Study (GWAS) Initiative
U19-CA148112
Wellcome Trust
076113
European Community's Seventh Framework Programme (COGS)
223175 (HEALTH-F2-2009-223175)
National Institutes of Health
CA128978
Post-Cancer GWAS initiative (GAME-ON initiative)
1U19 CA148537
1U19 CA148065
1U19 CA148112
Department of Defence
W81XWH-10-1-0341
Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure
Breast Cancer Research Foundation,
Ovarian Cancer Research Fundinfo:eu-repo/grantAgreement/EC/FP7/22317