43 research outputs found

    Role of Flexibility in Protein-DNA-Drug Recognition: The Case of Asp677Gly-Val703Ile Topoisomerase Mutant Hypersensitive to Camptothecin

    Get PDF
    Topoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated. The mutant displays a lower religation rate of the DNA substrate when compared to the wild-type protein. Analyses of the structural dynamical properties by molecular dynamics simulation show that the mutant has reduced flexibility and an active site partially destructured at the level of the Lys532 residue. These results demonstrate long-range communication mechanism where reduction of the linker flexibility alters the active site geometry with the consequent lowering of the religation rate and increase in drug sensitivity

    Novel topoisomerase I inhibitors. Syntheses and biological evaluation of phosphorus substituted quinoline derivates with antiproliferative activity

    Get PDF
    This work describes the synthesis of 1,2,3,4-tetrahydroquinolinylphosphine oxides, phosphanes and phosphine sulfides as well as that of quinolinylphosphine oxides and phosphine sulfides, which were synthesized in good to high overall yield. The synthetic route involves a multicomponent reaction of (2-phosphine-oxide)-, 2-phosphine- or (2-phosphine-sulfide)-aniline, aldehydes and olefins and allows the selective generation of two stereogenic centres in a short, efficient and reliable synthesis. The selective dehydrogenation of 1,2,3,4-tetrahydroquinolinylphosphine oxides and phosphine sulfides leads to the formation of corresponding phosphorus substituted quinolines. Some of the products which were prepared showed excellent activity as topoisomerase I (Top1) inhibitors. In addition, prolonged effect of the most potent compounds is maintained with the same intensity even after 3 min of the beginning of the enzymatic reaction. The cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549), human ovarian carcinoma (SKOV03) and human embryonic kidney (HEK293) was also screened. 1,2,3,4-Tetrahydroquinolinylphosphine oxide 6g with an IC50 value of 0.25 ± 0.03 μM showed excellent activity against the A549 cell line in vitro, while 1,2,3,4-tetrahydroquinolinylphosphane 9c with an IC50 value of 0.08 ± 0.01 μM and 1,2,3,4-tetrahydroquinolinylphosphine sulfide derivative 10f with an IC50 value of 0.03 ± 0.04 μM are more active against the A549 cell line. Moreover, selectivity towards cancer cell (A549) over non-malignant cells (MRC5) has been observed. According to their structure, they may be excellent antiproliferative candidates.Financial support from the Ministerio de Economía y Competitividad (MINECO, CTQ2015-67871-R) and by Gobierno Vasco (GV, IT 992-16) is gratefully acknowledged. Technical and human support provided by IZO-SGI, SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is gratefully acknowledged

    Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds

    Get PDF
    With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.This research was funded in part by the Ministerio de Ciencia e Innovación, Spain (PID2021-122558OB-I00, UE) and by Gobierno Vasco, Universidad del País Vasco (GV, IT1701-22; UPV)

    Simple and Fast DNA Based Sensor System for Screening of Small-Molecule Compounds Targeting Eukaryotic Topoisomerase 1

    Get PDF
    Background: Eukaryotic topoisomerase 1 is a potential target of anti-parasitic and anti-cancer drugs. Parasites require topoisomerase 1 activity for survival and, consequently, compounds that inhibit topoisomerase 1 activity may be of interest. All effective topoisomerase 1 drugs with anti-cancer activity act by inhibiting the ligation reaction of the enzyme. Screening for topoisomerase 1 targeting drugs, therefore, should involve the possibility of dissecting which step of topoisomerase 1 activity is affected. Methods: Here we present a novel DNA-based assay that allows for screening of the effect of small-molecule compounds targeting the binding/cleavage or the ligation steps of topoisomerase 1 catalysis. This novel assay is based on the detection of a rolling circle amplification product generated from a DNA circle resulting from topoisomerase 1 activity. Results: We show that the binding/cleavage and ligation reactions of topoisomerase 1 can be investigated separately in the presented assay termed REEAD (C|L) and demonstrate that the assay can be used to investigate, which of the individual steps of topoisomerase 1 catalysis are affected by small-molecule compounds. The assay is gel-free and the results can be detected by a simple colorimetric readout method using silver-on-gold precipitation rendering large equipment unnecessary. Conclusion: REEAD (C|L) allows for easy and quantitative investigations of topoisomerase 1 targeting compounds and can be performed in non-specialized laboratories.K.V. thanks Aase and Ejnar Danielsens Fond, Aage and Johanne Louis-Hansens Fond and Edel and Wilhelm Daubenmerkls Almenvelgørende Fond; A.S. thanks the Basque Government for a formation contract

    Topoisomerase 1 inhibits MYC promoter activity by inducing G-quadruplex formation

    Get PDF
    We have investigated the function of human topoisomerase 1 (TOP1) in regulation of G-quadruplex (G4) formation in the Pu27 region of the MYC P1 promoter. Pu27 is among the best characterized G4 forming sequences in the human genome and it is well known that promoter activity is inhibited upon G4 formation in this region. We found that TOP1 downregulation stimulated transcription from a promoter with wildtype Pu27 but not if the G4 motif in Pu27 was interrupted by mutation(s). The effect was not specific to the MYC promoter and similar results were obtained for the G4 forming promoter element WT21. The other major DNA topoisomerases with relaxation activity, topoisomerases 2α and β, on the other hand, did not affect G4 dependent promoter activity. The cellular studies were supported by in vitro investigations demonstrating a high affinity of TOP1 for wildtype Pu27 but not for mutant sequences unable to form G4. Moreover, TOP1 was able to induce G4 formation in Pu27 inserted in double stranded plasmid DNA in vitro. This is the first time TOP1 has been demonstrated capable of inducing G4 formation in double stranded DNA and of influencing G4 formation in cells

    Evidence of the crucial role of the linker domain on the catalytic activity of human topoisomerase I by experimental and simulative characterization of the Lys681Ala mutant

    Get PDF
    The functional and structural-dynamical properties of the Lys681Ala mutation in the human topoisomerase IB linker domain have been investigated by catalytic assays and molecular dynamics simulation. The mutant is characterized by a comparable cleavage and a strongly reduced religation rate when compared to the wild type protein. The mutant also displays perturbed linker dynamics, as shown by analysis of the principal components of the motion, and a reduced electrostatic interaction with DNA. Inspection of the inter atomic distances in proximity of the active site shows that in the mutant the distance between the amino group of Lys532 side chain and the 5′ OH of the scissile phosphate is longer than the wild type enzyme, providing an atomic explanation for the reduced religation rate of the mutant. Taken together these results indicate the existence of a long range communication between the linker domain and the active site region and points out the crucial role of the linker in the modulation of the catalytic activity

    Different Camptothecin Sensitivities in Subpopulations of Colon Cancer Cells Correlate with Expression of Different Phospho-Isoforms of Topoisomerase I with Different Activities

    No full text
    The heterogeneity of tumor cells and the potential existence of rare cells with reduced chemotherapeutic response is expected to play a pivotal role in the development of drug resistant cancers. Herein, we utilized the colon cancer cell lines, Caco2 and DLD1, to investigate heterogeneity of topoisomerase 1 (TOP1) activity in different cell subpopulations, and the consequences for the chemotherapeutic response towards the TOP1 targeting drug, camptothecin. The cell lines consisted of two subpopulations: one (the stem-cell-like cells) divided asymmetrically, was camptothecin resistant, had a differently phosphorylated TOP1 and a lower Casein Kinase II (CKII) activity than the camptothecin sensitive non-stem-cell-like cells. The tumor suppressor p14ARF had a different effect in the two cell subpopulations. In the stem-cell-like cells, p14ARF suppressed TOP1 activity and downregulation of this factor increased the sensitivity towards camptothecin. It had the opposite effect in non-stem-cell-like cells. Since it is only the stem-cell-like cells that have tumorigenic activity our results point towards new considerations for future cancer therapy. Moreover, the data underscore the importance of considering cell-to-cell variations in the analysis of molecular processes in cell lines

    Simple and Fast DNA-Based Tool to Investigate Topoisomerase 1 Activity, a Biomarker for Drug Susceptibility in Colorectal Cancer

    No full text
    With the increased effort for identification of anticancer compounds, there is a growing need for tools to investigate the activity of enzyme biomarkers. Human topoisomerase 1 is the only target of the camptothecin derivatives, and the cellular drug response depends on the enzyme activity. Here we use the colon cancer cell line Caco2 to investigate the topoisomerase 1 activity using a simple and improved version of our rolling circle enhanced enzyme activity detection, the REEAD assay. We present two fast readout methods that do not require the use of specialized training or equipment. In this setup, topoisomerase 1 converts specific DNA substrates to closed circles. The circles are amplified by rolling circle amplification in the presence of biotinylated nucleotides allowing for the detection of the products using horse radish peroxidase conjugated anti-biotin antibodies. The visualization occurs by either ECL or by color development through the precipitation of the TMB onto the surface. The presented readouts allow for fast and sensitive screening of topoisomerase 1 activity in extracts from Caco2 cells, potentially enabling the patients’ stratification and the prediction of the chemotherapeutic response for individualized treatment. For these reasons, we believe that the presented method would be easily adaptable to the clinical settings

    Phosphorylation of the Human DNA Glycosylase NEIL2 Is Affected by Oxidative Stress and Modulates Its Activity

    No full text
    The DNA glycosylase NEIL2 plays a central role in maintaining genome integrity, in particular during oxidative stress, by recognizing oxidized base lesions and initiating repair of these via the base excision repair (BER) pathway. Post-translational modifications are important molecular switches that regulate and coordinate the BER pathway, and thereby enable a rapid and fine-tuned response to DNA damage. Here, we report for the first time that human NEIL2 is regulated by phosphorylation. We demonstrate that NEIL2 is phosphorylated by the two kinases cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in vitro and in human SH-SY5Y neuroblastoma cells. The phosphorylation of NEIL2 by PKC causes a substantial reduction in NEIL2 repair activity, while CDK5 does not directly alter the enzymatic activity of NEIL2 in vitro, suggesting distinct modes of regulating NEIL2 function by the two kinases. Interestingly, we show a rapid dephosphorylation of NEIL2 in response to oxidative stress in SH-SY5Y cells. This points to phosphorylation as an important modulator of NEIL2 function in this cellular model, not least during oxidative stress
    corecore