63 research outputs found

    Adiponectin signaling in the liver

    Get PDF
    High glucose production contributes to fed and fasted hyperglycemia in Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). The breakdown of the adiponectin signaling pathway in T1D and the reduction of circulating adiponectin in T2D contribute to this abnormal increase in glucose production. Sufficient amounts of insulin could compensate for the loss of adiponectin signaling in T1D and T2D and reduce hyperglycemia. However, the combination of low adiponectin signaling and high insulin resembles an insulin resistance state associated with cardiovascular disease and decreased life expectancy. Future development of medications that correct the deficiency of adiponectin signaling in the liver could restore the metabolic balance in T1D and T2D and reduce the need for insulin. This article reviews the adiponectin signaling pathway in the liver through T-cadherin, AdipoR1, AdipoR2, AMPK, ceramidase activity, APPL1 and the recently discovered Suppressor Of Glucose from Autophagy (SOGA)

    Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease?

    Full text link
    Published in final edited form as: Gait Posture. 2017 February ; 52: 178–182. doi:10.1016/j.gaitpost.2016.11.033.We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population.This study was funded by the Davis Phinney Foundation, the Parkinson's Disease Foundation, and the National Institutes of Health (R01 NS077959, K12 HD055931, UL1 TR000448). The funding sources had no input related to study design, data collection, or decision to submit for publication. (Davis Phinney Foundation; Parkinson's Disease Foundation; R01 NS077959 - National Institutes of Health; K12 HD055931 - National Institutes of Health; UL1 TR000448 - National Institutes of Health

    Adiponectin Decreases Pulmonary Arterial Remodeling in Murine Models of Pulmonary Hypertension

    Get PDF
    Remodeling of the pulmonary arteries is a common feature among the heterogeneous disorders that cause pulmonary hypertension. In these disorders, the remodeled pulmonary arteries often demonstrate inflammation and an accumulation of pulmonary artery smooth muscle cells (PASMCs) within the vessels. Adipose tissue secretes multiple bioactive mediators (adipokines) that can influence both inflammation and remodeling, suggesting that adipokines may contribute to the development of pulmonary hypertension. We recently reported on a model of pulmonary hypertension induced by vascular inflammation, in which a deficiency of the adipokine adiponectin (APN) was associated with the extensive proliferation of PASMCs and increased pulmonary artery pressures. Based on these data, we hypothesize that APN can suppress pulmonary hypertension by directly inhibiting the proliferation of PASMCs. Here, we tested the effects of APN overexpression on pulmonary arterial remodeling by using APN-overexpressing mice in a model of pulmonary hypertension induced by inflammation. Consistent with our hypothesis, mice that overexpressed APN manfiested reduced pulmonary hypertension and remodeling compared with wild-type mice, despite developing similar levels of pulmonary vascular inflammation in the model. The overexpression of APN was also protective in a hypoxic model of pulmonary hypertension. Furthermore, APN suppressed the proliferation of PASMCs, and reduced the activity of the serum response factor–serum response element pathway, which is a critical signaling pathway for smooth muscle cell proliferation. Overall, these data suggest that APN can regulate pulmonary hypertension and pulmonary arterial remodeling through its direct effects on PASMCs. Hence, the activation of APN-like activity in the pulmonary vasculature may be beneficial in pulmonary hypertension

    Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition

    Get PDF
    Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high sucrose diet or a 3-month high fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1−/− mice contained 20–80% less TAG than the wildtype controls. In addition, hearts from Gpat1−/− mice fed the high-sucrose diet incorporate 60% less [14C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1−/− mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1−/− hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high fat diets and influences the incorporation of 20:4n6 into heart phospholipids

    LPS INHIBITION OF GLUCOSE PRODUCTION THROUGH THE TLR4, MYD88, NFκB PATHWAY

    Get PDF
    Acute exposure to lipopolysaccharide (LPS) can cause hypoglycemia and insulin resistance; the underlying mechanisms however, are unclear. We set out to determine whether insulin resistance is linked to hypoglycemia through TLR4, MyD88 and NFκB, a cell signaling pathway that mediates LPS induction of the proinflammatory cytokine TNFα. LPS induction of hypoglycemia was blocked in TLR4−/− and MyD88−/− mice but not in TNFα−/− mice. Both glucose production and glucose utilization were decreased during hypoglycemia. Hypoglycemia was associated with the activation of NFκB in the liver. LPS inhibition of glucose production was blocked in hepatocytes isolated from TLR4−/− and MyD88−/− mice and hepatoma cells expressing an IκB mutant that interferes with NFκB activation. Thus, LPS-induced hypoglycemia was mediated by the inhibition of glucose production from the liver through the TLR4, MyD88, NFκB pathway, independent of LPS induced TNFα. LPS inhibition of glucose production was not blocked by pharmacologic inhibition of the insulin signaling intermediate PI3K in hepatoma cells. Insulin injection caused a similar reduction of circulating glucose in TLR4−/− and TLR4+/+ mice. These two results suggest that LPS and insulin inhibit glucose production by separate pathways. Recovery from LPS induced hypoglycemia was linked to glucose intolerance and hyperinsulinemia in TLR4+/+ mice, but not in TLR4−/− mice

    Population-specific coding variant underlies genome-wide association with adiponectin level

    Get PDF
    Adiponectin is a protein hormone that can affect major metabolic processes including glucose regulation and fat metabolism. Our previous genome-wide association (GWA) study of circulating plasma adiponectin levels in Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS) detected a 100 kb two-SNP haplotype at KNG1–ADIPOQ associated with reduced adiponectin (frequency = 0.050, P = 1.8 × 10−25). Subsequent genotyping of CLHNS young adult offspring detected an uncommon variant [minor allele frequency (MAF) = 0.025] located ∼800 kb from ADIPOQ that showed strong association with lower adiponectin levels (P = 2.7 × 10−15, n = 1695) and tagged a subset of KNG1–ADIPOQ haplotype carriers with even lower adiponectin levels. Sequencing of the ADIPOQ-coding region detected variant R221S (MAF = 0.015, P = 2.9 × 10−69), which explained 17.1% of the variance in adiponectin levels and largely accounted for the initial GWA signal in Filipinos. R221S was not present in 12 514 Europeans with previously sequenced exons. To explore the mechanism of this substitution, we re-measured adiponectin level in 20 R221S offspring carriers and 20 non-carriers using two alternative antibodies and determined that the presence of R221S resulted in artificially low quantification of adiponectin level using the original immunoassay. These data provide an example of an uncommon variant responsible for a GWA signal and demonstrate that genetic associations with phenotypes measured by antibody-based quantification methods can be affected by uncommon coding SNPs residing in the antibody target region

    Low Utilization of Circulating Glucose after Food Withdrawal in Snell Dwarf Mice

    Get PDF
    Glucose metabolism is altered in long-lived people and mice. Although it is clear that there is an association between altered glucose metabolism and longevity, it is not known whether this link is causal or not. Our current hypothesis is that decreased fasting glucose utilization may increase longevity by reducing oxygen radical production, a potential cause of aging. We observed that whole body fasting glucose utilization was lower in the Snell dwarf, a long-lived mutant mouse. Whole body fasting glucose utilization may be reduced by a decrease in the production of circulating glucose. Our isotope labeling analysis indicated both gluconeogenesis and glycogenolysis were suppressed in Snell dwarfs. Elevated circulating adiponectin may contribute to the reduction of glucose production in Snell dwarfs. Adiponectin lowered the appearance of glucose in the media over hepatoma cells by suppressing gluconeogenesis and glycogenolysis. The suppression of glucose production by adiponectin in vitro depended on AMP-activated protein kinase, a cell mediator of fatty acid oxidation. Elevated fatty acid oxidation was indicated in Snell dwarfs by increased utilization of circulating oleic acid, reduced intracellular triglyceride content, and increased phosphorylation of acetyl-CoA carboxylase. Finally, protein carbonyl content, a marker of oxygen radical damage, was decreased in Snell dwarfs. The correlation between high glucose utilization and elevated oxygen radical production was also observed in vitro by altering the concentrations of glucose and fatty acids in the media or pharmacologic inhibition of glucose and fatty acid oxidation with 4-hydroxycyanocinnamic acid and etomoxir, respectively

    Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize

    Get PDF
    International audienceSelenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (SeIV and SeVI) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L−1 of selenium (SeIV, SeVI, Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility

    Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice

    Get PDF
    Pit1 null (Snell dwarf) and Proph1 null (Ames dwarf) mutant mice lack GH, PRL and TSH. Snell and Ames dwarf mice also exhibit reduced IGF-I, resistance to cancer and a longer lifespan than control mice. Endogenous glucose production during fasting is reduced in Snell dwarf mice compared to fasting control mice. In view of cancer cell dependence on glucose for energy, low endogenous glucose production may provide Snell dwarf mice with resistance to cancer. We investigated whether endogenous glucose production is lower in Snell dwarf mice during feeding. Inhibition of endogenous glucose production by glucose injection was enhanced in 12 to 14 month-old female Snell dwarf mice. Thus, we hypothesize that lower endogenous glucose production during feeding and fasting reduces cancer cell glucose utilization providing Snell dwarf mice with resistance to cancer. The elevation of circulating adiponectin, a hormone produced by adipose tissue, may contribute to the suppression of endogenous glucose production in 12 to 14 month-old Snell dwarf mice. We compared the incidence of cancer at time of death between old Snell dwarf and control mice. Only 18% of old Snell dwarf mice had malignant lesions at the time of death compared to 82% of control mice. The median ages at death for old Snell dwarf and control mice were 33 and 26 months, respectively. By contrast, previous studies showed a high incidence of cancer in old Ames dwarf mice at the time of death. Hence, resistance to cancer in old Snell dwarf mice may be mediated by neuroendocrine factors that reduce glucose utilization besides elevated adiponectin, reduced IGF-I and a lack of GH, PRL and TSH, seen in both Snell and Ames dwarf mice. Proteomics analysis of pituitary secretions from Snell dwarf mice confirmed the absence of GH and PRL, the secretion of ACTH and elevated secretion of Chromogranin B and Secretogranin II. Radioimmune assays confirmed that circulating Chromogranin B and Secretogranin II were elevated in 12 to 14 month-old Snell dwarf mice. In summary, our results in Snell dwarf mice suggest that the pituitary gland and adipose tissue are part of a neuroendocrine loop that lowers the risk of cancer during aging by reducing the availability of glucose

    Excitability and Synaptic Alterations in the Cerebellum of APP/PS1 Mice

    Get PDF
    In Alzheimer's disease (AD), the severity of cognitive symptoms is better correlated with the levels of soluble amyloid-beta (Aβ) rather than with the deposition of fibrillar Aβ in amyloid plaques. In APP/PS1 mice, a murine model of AD, at 8 months of age the cerebellum is devoid of fibrillar Aβ, but dosage of soluble Aβ1–42, the form which is more prone to aggregation, showed higher levels in this structure than in the forebrain. Aim of this study was to investigate the alterations of intrinsic membrane properties and of synaptic inputs in Purkinje cells (PCs) of the cerebellum, where only soluble Aβ is present. PCs were recorded by whole-cell patch-clamp in cerebellar slices from wild-type and APP/PS1 mice. In APP/PS1 PCs, evoked action potential discharge showed enhanced frequency adaptation and larger afterhyperpolarizations, indicating a reduction of the intrinsic membrane excitability. In the miniature GABAergic postsynaptic currents, the largest events were absent in APP/PS1 mice and the interspike intervals distribution was shifted to the left, but the mean amplitude and frequency were normal. The ryanodine-sensitive multivescicular release was not altered and the postsynaptic responsiveness to a GABAA agonist was intact. Climbing fiber postsynaptic currents were normal but their short-term plasticity was reduced in a time window of 100–800 ms. Parallel fiber postsynaptic currents and their short-term plasticity were normal. These results indicate that, in the cerebellar cortex, chronically elevated levels of soluble Aβ1–42 are associated with alterations of the intrinsic excitability of PCs and with alterations of the release of GABA from interneurons and of glutamate from climbing fibers, while the release of glutamate from parallel fibers and all postsynaptic mechanisms are preserved. Thus, soluble Aβ1–42 causes, in PCs, multiple functional alterations, including an impairment of intrinsic membrane properties and synapse-specific deficits, with differential consequences even in different subtypes of glutamatergic synapses
    • …
    corecore