157 research outputs found

    Identifying indicators of vulnerability from short speech segments using acoustic and textual features

    Get PDF
    In order to protect vulnerable people in telemarketing, organisations have to investigate the speech recordings to identify them first. Typically, the investigation is manually conducted. As such, the procedure is costly and time-consuming. With an automatic vulnerability detection system, more vulnerable people can be identified and protected. A standard telephone conversation lasts around 5 minutes, the detection system is expected to be able to identify such a potential vulnerable speaker from speech segments. Due to the complexity of the vulnerability definition and the unavailable annotated vulnerability examples, this paper attempts to address the detection problem as three classification tasks: age classification, accent classification and patient/non-patient classification utilising publicly available datasets. In the proposed system, we trained three sub models using acoustic and textual features for each sub task. Each trained model was evaluated on multiple datasets and achieved competitive results compared to a strong baseline (i.e. in-dataset accuracy)

    EZH2 variants differentially regulate polycomb repressive complex 2 in histone methylation and cell differentiation

    Get PDF
    Abstract Background Polycomb repressive complex 2 (PRC2) is responsible for establishing and maintaining histone H3K27 methylation during cell differentiation and proliferation. H3K27 can be mono-, di-, or trimethylated, resulting in differential gene regulation. However, it remains unknown how PRC2 specifies the degree and biological effects of H3K27 methylation within a given cellular context. One way to determine PRC2 specificity may be through alternative splicing of Ezh2, PRC2’s catalytic subunit, during cell differentiation and tissue maturation. Results We fully characterized the alternative splicing of Ezh2 in somatic cells and male germ cells and found that Ezh’s exon 14 was differentially regulated during mitosis and meiosis. The Ezh2 isoform containing exon 14 (ex14-Ezh2) is upregulated during cell cycle progression, consistent with a role in maintaining H3K27 methylation during chromatin replication. In contrast, the isoform lacking exon 14 (ex14D-Ezh2) was almost exclusively present in spermatocytes when new H3K27me2 is established during meiotic differentiation. Moreover, Ezh2’s transcript is normally controlled by E2F transcription activators, but in spermatocytes, Ezh2’s transcription is controlled by the meiotic regulator MYBL1. Compared to ex14-EZH2, ex14D-EZH2 has a diminished efficiency for catalyzing H3K27me3 and promotes embryonic stem cell differentiation. Conclusions Ezh2’s expression is regulated at transcriptional and post-transcriptional levels in a cellular context-dependent manner. EZH2 variants determine functional specificity of PRC2 in histone methylation during cell proliferation and differentiation

    Key mediators of somatic ATR signaling localize to unpaired chromosomes in spermatocytes

    Get PDF
    Meiotic silencing of unpaired chromatin (MSUC) occurs during the first meiotic prophase, as chromosomes that fail to pair are sequestered into a transcriptionally repressive nuclear domain. This phenomenon is exemplified by the heterologous sex chromosomes of male mammals, where the ATR DNA damage response kinase is crucial for this silencing event. However, the mechanisms underlying the initiation of MSUC remain unknown. Here, we show that essential components of ATR signaling in murine somatic cells are spatially confined to unpaired chromosomes in spermatocytes, including the ATR-dependent phosphorylation of the single-stranded DNA (ssDNA)-binding complex replication protein A (RPA) and the checkpoint kinase CHK1. These observations support a model in which ssDNA plays a central role in the recruitment of ATR during MSUC, and provide a link to meiotic progression through activation of CHK1

    Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development

    Get PDF
    Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis

    Differentiation-Driven Nucleolar Association of the Mouse Imprinted Kcnq1 Locus

    Get PDF
    The organization of the genome within the mammalian nucleus is nonrandom, with physiologic processes often concentrated in specific three-dimensional domains. This organization may be functionally related to gene regulation and, as such, may play a role in normal development and human disease processes. However, the mechanisms that participate in nuclear organization are poorly understood. Here, we present data characterizing localization of the imprinted Kcnq1 alleles. We show that nucleolar association of the paternal allele (1) is stimulated during the differentiation of trophoblast stem cells, (ii) is dependent upon the Kcnq1ot1 noncoding RNA, (3) does not require polycomb repressive complex 2, and (4) is not sufficient to preclude transcription of imprinted genes. Although nucleolar positioning has been proposed as a mechanism to related to gene silencing, we find that silencing and perinucleolar localization through the Kcnq1ot1 noncoding RNA are separable events

    Chemical and Biochemical Technologies for Environmental Infrastructure Sustainability

    Get PDF
    Lawrence K. Wang, Mu-Hao Sung Wang, Thomas Suozzo, Rebecca A. Dixon, and Terry L. Wright (2023) . Chemical and Biochemical Technologies for Environmental Infrastructure Sustainability, In: "Evolutionary Progress in Science, Technology, Engineering, Arts, and Mathematics (STEAM)", Lawrence K. Wang and Hung-ping Tsao (editors). Volume 5, Number 10A, October 2023; 5(10A), 58 pages. Lenox Institute Press, MA, USA. https://doi.org/10.17613/z30s-gj22 ..... ABSTRACT: Various highly efficient flotation processes and systems are introduced for water and wastewater infrastructure sustainability. This publication covers the following subjects: (a) Flotation types , theories, principles, and “zero velocity concept”; (b) Unit processes of mixing, coagulation, precipitation, flocculation, clarification (flotation or sedimentation), filtration, disinfection, sludge thickening and sludge dewatering; (c) Flotation rising rate, surface loading rate, and detention time; (d) Dissolved air flotation (DAF), DAF-filtration (DAFF) and sedimentation comparison; (e) Various municipal and industrial applications of DAF and DAFF; (f) Full scale rectangular and circular DAF and DAFF installations for potable water treatment and industrial effluent treatment when land space and budget are limited; (g) upgrading an existing sedimentation to a DAF-sedimentation clarifier; (h) DAF sludge thickening and screwpress sludge dewatering (Float Press); (i) Oxyozosynthesis system (oxygenation, ozonation, sludge wet oxidation, and Float Press sludge dewatering); (j) Biological or physicochemical sequencing batch reactor (SBR); (k) Recent advances in and case histories of dissolved gas flotation (DGF), primary flotation, secondary flotation, tertiary flotation, nitrification, denitrification, flotation sludge thickening, dissolved carbon dioxide flotation (DCDF), dairy wastewater treatment (WWT), and tannery WWT

    Does a small central Nd:YAG posterior capsulotomy improve peripheral fundal visualisation for the Vitreoretinal surgeon?

    Get PDF
    BACKGROUND: To evaluate the effect of Nd:YAG capsulotomy for posterior capsular opacification (PCO) on visualisation of the peripheral fundus with scleral indentation. METHODS: Patients undergoing Nd:YAG capsulotomy for PCO were examined pre- and four weeks post- Nd:YAG capsulotomy. In order to give a quantitative measure of visualisation of the peripheral retina, a novel scalar measurement was developed. Changes in the degree of visualisation following Nd:YAG capsulotomy were calculated. RESULTS: There was a significant improvement in fundal visualisation of the retinal periphery with scleral indentation following Nd:YAG capsulotomy (p = 0.001). CONCLUSION: Peripheral fundal visualisation with scleral indentation improves following a small central Nd:YAG capsulotomy. This finding is important in relation to the detection of peripheral pseudophakic retinal breaks, particularly in those patients deemed at high risk following Nd:YAG capsulotomy

    Brain indices of disagreement with one's social values predict EU referendum voting behavior

    Get PDF
    Pre-electoral surveys typically attempt, and sometimes fail, to predict voting behavior on the basis of explicit measures of agreement or disagreement with a candidate or political position. Here, we assessed whether a specific brain signature of disagreement with one's social values, the event-related potential component N400, could be predictive of voting behavior. We examined this possibility in the context of the EU referendum in the United Kingdom. In the five weeks preceding the referendum, we recorded the N400 while participants with different vote intentions expressed their agreement or disagreement with pro- and against-EU statements. We showed that the N400 responded to statements incongruent with one's view regarding the EU. Crucially, this effect predicted actual voting behavior in decided as well as undecided voters. The N400 was a better predictor of voting choice than an explicit index of preference based on the behavioral responses. Our findings demonstrate that well-defined patterns of brain activity can forecast future voting behavior

    A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa

    Get PDF
    BACKGROUND: The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major surface antigen of Plasmodium falciparum blood stages and underlie the parasite's ability to establish chronic infection and transmit from human to mosquito. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular epidemiology of the var multigene family at local sites in Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were defined by sequencing DBLα domains in the three sites. Only 76 (4.1%) var types were found in more than one population indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences. CONCLUSIONS/SIGNIFICANCE: Var population genomics provides new insights into the epidemiology of P. falciparum in Africa where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread pre-existing immunity in the population exists
    corecore