1,434 research outputs found

    Current Research: Analysis of Ceramic Vessel Residues from the Washington Square Mound Site (41NA49) for Evidence of Peyote use by the Caddo in the 13th-15th centuries A.D.

    Get PDF
    In 2012, Perttula requested permission from to the Caddo Nation of Oklahoma\u27s Repatriation Committee to analyze small samples (ca. 1-2 grams of ceramic paste, or sherds ca. 1-2 square centimeters in size) from the paste of five vessels from Features 31 and 95 at the Washington Square Mound site (41NA49) (Perttula et al. 2010) in East Texas to identify residue traces of the Caddo\u27s use of peyote in the 13th-15th centuries A.D. The Caddo Nation of Oklahoma gave their permission to conduct these ceramic vessel residue studies

    Workers' Compensation Under Alternative Insurance Arrangements

    Get PDF
    The authors use a unique panel data set of state-level data for 48 jurisdictions between 1975 and 1995 to explore the effects of insurance arrangements on workplace safety, the structure of the workers' compensation insurance market, and the employers' costs of workers' compensation insurance. In addition, we examine the trade-off between the benefit adequacy and affordability objectives of state workers' compensation programs and estimate the impact that the imposition of federal standards for benefit adequacy would have on workers' compensation costs

    Lawyers, Guns, and Money: What Price Justice

    Get PDF

    Wind-tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1.4

    Get PDF
    Flush pressure orifices installed on the nose section of a 1/7-scale model of the F-14 airplane were evaluated for use as a flush airdata system (FADS). Wing-tunnel tests were conducted in the 11- by 11-ft Unitary Wind Tunnel at NASA Ames Research Center. A full-scale FADS of the same configuration was previously tested using an F-14 aircraft at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden). These tests, which were published, are part of a NASA program to assess accuracies of FADS for use on aircraft. The test program also provides data to validate algorithms for the shuttle entry airdata system developed at the NASA Langley Research Center. The wind-tunnel test Mach numbers were 0.73, 0.90, 1.05, 1.20, and 1.39. Angles of attack were varied in 2 deg increments from -4 deg to 20 deg. Sideslip angles were varied in 4 deg increments from -8 deg to 8 deg. Airdata parameters were evaluated for determination of free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and Mach number. These parameters are, in most cases, the same as the parameters investigated in the flight test program. The basic FADS wind-tunnel data are presented in tabular form. A discussion of the more accurate parameters is included

    Home-based physical therapy with an interactive computer vision system

    Full text link
    In this paper, we present ExerciseCheck. ExerciseCheck is an interactive computer vision system that is sufficiently modular to work with different sources of human pose estimates, i.e., estimates from deep or traditional models that interpret RGB or RGB-D camera input. In a pilot study, we first compare the pose estimates produced by four deep models based on RGB input with those of the MS Kinect based on RGB-D data. The results indicate a performance gap that required us to choose the MS Kinect when we tested ExerciseCheck with Parkinson’s disease patients in their homes. ExerciseCheck is capable of customizing exercises, capturing exercise information, evaluating patient performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. We conclude that ExerciseCheck is a user-friendly computer vision application that can assist patients by providing motivation and guidance to ensure correct execution of the required exercises. Our results also suggest that while there has been considerable progress in the field of pose estimation using deep learning, current deep learning models are not fully ready to replace RGB-D sensors, especially when the exercises involved are complex, and the patient population being accounted for has to be carefully tracked for its “active range of motion.”Published versio

    Polyimide Matrix composites: Polyimidesulfone/LARC-TPI (1:1) blend

    Get PDF
    Polyimide matrix composites were fabricated from unidirectional unsized AS-4 carbon fiber and a doped 1:1 blend of two polyimides: benzophenone dianhydride-3,3'-diamino diphenylsulfone (PISO2) and benzophenone dianhydride-3,3'-diamino benzophenone (LARC-TPI). To enhance melt flow properties, the molecular weight of the PISO2 was controlled by end-capping with phthalic anhydride and addition of 5 percent by weight p-phenylene diamine-phthalic anhydride bisamic acid dopant. Prepreg was drum-wound using a diglyme slurry comprised of the soluble polyamideacid of PISO2, the soluble bisamideacid of the dopant, and the insoluble imidized LARC-TPI powder. Melt flow studies with a rotary rheometer and parallel plate plastometer on neat resin and prepreg helped develop an optimum cure cycle. Composite mechanical properties at room and elevated temperatures, dry and moisture-saturated, were evaluated, including short beam shear strength and flexure, tensile, shear, and compression properties. Two 18 in. x 24 in. skin-stringer panels were fabricated, one of which was tested in compression to failure

    Mantle melting as a function of water content beneath back-arc basins

    Get PDF
    Subduction zone magmas are characterized by high concentrations of H_(2)O, presumably derived from the subducted plate and ultimately responsible for melting at this tectonic setting. Previous studies of the role of water during mantle melting beneath back-arc basins found positive correlations between the H_(2)O concentration of the mantle (H_(2)O_o ) and the extent of melting (F), in contrast to the negative correlations observed at mid-ocean ridges. Here we examine data compiled from six back-arc basins and three mid-ocean ridge regions. We use TiO_2 as a proxy for F, then use F to calculate H_(2)O_o from measured H_(2)O concentrations of submarine basalts. Back-arc basins record up to 0.5 wt % H_(2)O or more in their mantle sources and define positive, approximately linear correlations between H_(2)O_o and F that vary regionally in slope and intercept. Ridge-like mantle potential temperatures at back-arc basins, constrained from Na-Fe systematics (1350°–1500°C), correlate with variations in axial depth and wet melt productivity (∼30–80% F/wt % H_(2)O_o ). Water concentrations in back-arc mantle sources increase toward the trench, and back-arc spreading segments with the highest mean H_(2)O_o are at anomalously shallow water depths, consistent with increases in crustal thickness and total melt production resulting from high H_(2)O. These results contrast with those from ridges, which record low H_(2)O_o (<0.05 wt %) and broadly negative correlations between H_(2)O_o and F that result from purely passive melting and efficient melt focusing, where water and melt distribution are governed by the solid flow field. Back-arc basin spreading combines ridge-like adiabatic melting with nonadiabatic mantle melting paths that may be independent of the solid flow field and derive from the H_(2)O supply from the subducting plate. These factors combine significant quantitative and qualitative differences in the integrated influence of water on melting phenomena in back-arc basin and mid-ocean ridge settings

    Space Launch System Mission Flexibility Assessment

    Get PDF
    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit
    corecore