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The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future 
beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal 
configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of 
missions that may be required of this system. These mission scenarios include single launch crew and/or cargo 
delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and 
single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission 
scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most 
flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to 
the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission 
objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from 
Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization 
of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments 
when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial 
results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing 
Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit. 
 
 

I. Introduction 
In early 2011 immediately following the Space 

Launch System (SLS) Requirements Analysis Cycle 
(RAC) and Mission Concept Review (MCR), a study 
was undertaken by members of RAC Team 2 that 
assessed alternative mission scenarios that could 
make use of this highly capable heavy-lift launch 
vehicle. This study focused on the technical 
feasibility of performing wide ranging single launch 
mission scenarios using many in-space propulsion 
options in multiple fashions across a variety of 
conceivable future heavy-lift performance 
capabilities. To demonstrate this approach, we 
assessed a specific mission to the Jupiter system.  
Results of this analysis identified minimum-energy 
opportunities, mass delivery capabilities, and ability 
to reduce mission costs through reduced trip duration 
and increased mass delivery (ample margin and 
spacecraft simplification potential). 
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II. Heavy Lift Capabilities Overview 

Leading up to the SLS MCR, the RAC teams 
generated feasible vehicle concepts that could meet 
the established SLS threshold requirements. These 
studies used rigorous technical analysis to verify that 
vehicle concepts could meet these requirements, and 
detailed the affordability approaches that were being 
used to reduce the design, development, test, 
production, and operational costs of the concepts. 

 
Initial vehicle concepts delivered at least 70 

metric tons to a representative low-Earth orbit, a 
lower boundary for acceptable payload delivery 
performance.  In fact, most concepts were able to 
deliver a minimum threshold of 100 metric tons to 
LEO. This 70-100 metric ton to LEO range is a 
reasonable best estimate for the type of early 
performance that can be expected from the next 
heavy lift launch system.  

 
Each of the concept teams developed 

intermediate or early block upgrades to improve 
vehicle performance. While some concepts utilized 
additional stages for optimized performance, others 
increased engine thrust/efficiency or increased the 
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quantity of engines on the stages. The expected 
performance potential of these early upgrade options 
ranged from about 120 metric tons up to about 140 
metric tons to LEO. 

 
Evolved performance (referred to informally as 

the “vision vehicle”) represented a reasonable 
estimate for the maximum achievable performance 
within a given vehicle family. These vision vehicles 
varied in their upgrade approach, but they typically 
required major element changes, additional engines, 
or major upgrades to the existing engine or booster 
systems if applicable. Performance for this class of 
vehicles ranged from about 150 metric tons up to 
almost 200 metric tons to LEO.  

 
To summarize, the LEO performance of an 

eventual heavy lift vehicle can be expected to be in 
the 70 to 100 metric ton range initially, with an 
intermediate capability of between 120 to 140 metric 
tons achievable with some upgrades, and a maximum 
achievable performance potential of 150 to 200 
metric tons. The vehicles’ performance for beyond-
LEO scenarios will be discussed in a subsequent 
section. 
 

III. In-Space Stage Options 
Another way to increase performance is by 

adding an in-space stage to the vehicle 
configurations.  For purposes of this analysis, 
dedicated in-space stages were assessed that are 
representative of the type and size of stages that are 
either existing or currently envisioned for further 
development. The beyond LEO performance of these 
stages is primarily a function of efficiency.  This can 
be characterized using specific impulse (Isp) of the 
engines (propulsion system efficiency) and propellant 
mass fraction (pmf, structural design efficiency).  
 
Current Domestic Stages 

The four existing domestic stages considered 
during this analysis are described below. 

 
Atlas V Centaur[1] 

This stage has a long flight heritage on the Atlas 
and Titan vehicle families and can be used in either a 
single or dual engine configuration depending on 
mission needs. Characterized by using the RL-10 
engine, specific impulse of this cryogenic LOX/LH2 
system is above 450 seconds. Further, this stage is 
approximately 3 meters in diameter and almost 13 

meters in total integrated length. This allows the 
stage to hold approximately 21 metric tons of usable 
LOX/LH2 propellants in a very efficient structural 
packaging that results in a stage inert mass of about 2 
metric tons (pmf ~0.91).  
 

Delta IV 4-meter Upper Stage[1] 
This stage is used on certain configurations in 

the Delta family of vehicles and utilizes a single RL-
10B2 engine with a deployable nozzle that achieves a 
specific impulse greater than 460 seconds. This stage 
has a 4 meter diameter and is about 12 meters is total 
integrated length. Total usable propellant mass is 
greater than 20 metric tons, and the inert mass is 
slightly less than 3 metric tons (pmf ~0.84).  
 

Delta IV 5-meter Upper Stage[1] 
Also used on certain configurations in the Delta 

family of vehicle, including the Delta IV-Heavy, this 
stage is similar in design to the 4-m Upper Stage. 
Using the RL-10B2, the stage is 5 meters in diameter 
and about 12 meters in total length. This diameter 
change allows over 27 metric tons of usable 
propellant to be packaged efficiently with an inert 
mass of about 3.5 metric tons (pmf ~0.89).  
 

Falcon 9 2nd Stage[2] 
A new entrant into the domestic launch market, 

the Falcon 9 is an all-LOX/RP launch vehicle that has 
successfully launched from Cape Canaveral on two 
occasions as of this writing. The second stage uses 
what is typically referred to as the Merlin 1V 
(vacuum) that is similar in design to the Merlin 
engines used on the First Stage of the Falcon 9 
vehicle. Large efficiency increases for the 2nd Stage 
engine are realized through the usage of a niobium 
nozzle extension (Isp greater than 340 seconds). 
Furthermore, LOX/RP liquid propellant stages are 
typified by very high structural efficiencies. The 
Falcon 9 2nd Stage holds about 49 metric tons of 
usable propellant with only 3 metric tons of inert 
mass required (pmf of about 0.94).  
 
Selected Current International Stages 

In addition to the domestic stages that were 
considered, the technical feasibility of utilizing 
selected international stages was also assessed. The 
international stages that were considered includes: 
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over the “Multiple In-Space Stages; Fixed Dropoff” 
case. These include both the elimination of 
operational & integration complexity as well as 
removing the need to purchase many stages over the 
life of the exploration program.  

 
Additionally, the variable launch vehicle dropoff 

method allows for existing stages to be used in the 
capture of near-term, meaningful mission scenarios 
including crewed lunar flybys and high-priority 
science missions. This alleviates the need for NASA 
to begin a large in-space stage development program 
in the near term and allows for a competitive 
procurement approach & subsequent development of 
strategic partnerships across the industry. 

 
Finally, by being more flexible with the dropoff 

conditions, we were able to reduce the Europa 
mission scenario by up to 5 years and provide mass 
margin that could be used to greatly reduce 
spacecraft complexity. These improvements would 
result in an estimated $1B cost savings for this high-
priority science mission.  
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SPACE LAUNCH SYSTEM 
MISSION FLEXIBILITY ASSESSMENT 

 

1 



Beyond LEO Mission Options 

1.  Direct inject of payload using SLS “base vehicle” only 
•  Easy trades, limited to what SLS configuration can provide 

2.  Drop-off payload with an in-space stage into LEO 
•  Large trade space with all possible in-space stages options 
•  SLS dropoff point: -47x130 nmi @ 29o 

•  # of additional in-space stages: one 
3. Drop-off payload with multiple in-space stages into LEO 

•  SLS dropoff point: -47x130 nmi @ 29o 

•  # of additional in-space stages: multiple 
•  Two options for analysis: 

 a. Burn all stages concurrently 
 b. Burn stages in series, dropping spent stages 

4.  Drop-off payload with an in-space stage into LEO 
•  Large trade space with all possible in-space stages options 
•  SLS drop-off point: variable (optimized based on mission) 

•  # of additional in-space stages: one 
 

2 



LEO Performance Characterization 

3 

All vehicles exhibit small performance deltas at lower altitudes. 
As altitude increases smaller upper stages exhibit better performance trends  

Evolved  
Vehicles 

Intermediate 
Vehicles 

Early 
Vehicles 



Optimizing an In-Space Stage 

4 

§  Propulsion drives performance: 
•  Specific impulse is key driver (thrust can play a roll) 
•  Special characteristics (i.e. restartability, etc.) 

§  Gather assumptions for determining success: 
•  Destination/mission profile 
•  Payload requirements 
•  Loiter duration/functional requirements 
•  Many others 

§  Performance assessment 
•  Calculate delivered payload to desired delta-V 
•  Try all possible in-space stage configuration options 
•  Determine final delivered energy for all cases 
•  Plot payload and energy and compare to success criteria 
•  Use data, trends, and requirements to determine winners 



Overview of Upper Stage Options 
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Beyond LEO: Solar System C3 Map 
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LV Direct injection does not deliver a high payload to a high energy C3 
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SLS 

LEO 
-47x130 nmi 

C3 
Dependent on Mission 

C3 Burn by In Space Stage 
(DV=TBD) 
TBD Transit Time 

Payload Completes Mission 

P
ayload 

In S
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tage 

LV Drop-off w/ Single Stage Burn to C3 
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In-Space Stage Performance Keys 
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LV insertion point 

Key point: 
Shows maximum payload for in-
space stage.  To get this point 
higher the LV would need to 
deliver more mass to orbit. 

C3 gained by burning 
the in-space stage. To move  
point more to the right would 
require higher Isp. 

In-space stage wet mass 
plus losses. 

Example in-space stage performance curve. 
LV injects 160t at a c3 of -61.8 (LEO). 

Data points generated by step-wise 
reduction in final delivered payload 



Single Injection Stage 
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130t capability 

70t capability 100t capability 

160t capability 



LV Dropoff w/ Multiple Stages Burning to C3 

11 

Concurrent Burn Depicted 

C3 
Dependent on Mission 



Multiple In-Space Stages: Concurrent Burn 
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Concurrent means all stages burn together. Represents ~lower boundary. 

Maybe not realistic 

SLS Dropoff = -47x130 nmi @ 29o 



LV Dropoff w/ Multiple Stages Burning to C3 
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Serial Burn Depicted 

C3 
Dependent on Mission 



Multiple In-Space Stages: Serial Burn 

Serial means a stage burns then is jettisoned, repeat, etc. Upper performance boundary. 
14 

SLS Dropoff = -47x130 nmi @ 29o 



Integrated LV & In-Space Stage 

C3 
Dependent on Mission 
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Intermediate HLV (130t) + Delta IV-H Upper Stage  
(as in-space stage) Summary 
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Tracing out the highest mass as a function of the energy 
provided by the LV results in the following curve: 

Performance depicted uses intermediate vehicle with a single in-space stage 

Earth 
Escape 

~Mars 
Transfer 

~Ceres 
Transfer 

~Jupiter 
Transfer 

~Saturn 
Transfer 

~Uranus 
Transfer 

~Lunar 
Transfer 

Intermediate Orbit Approximations 

Optimal Dropoff 

“LEO Drop” assessed at  
-47x130nmi @ 29o 

130t Vehicle – Boeing D4H 



Interplanetary Mission Design: Europa DRM 
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Every year, various trajectory opportunities exist that 
have associated transfer durations and energy 
requirements. Depicted are the trajectories for 2015 
from Earth to Jupiter with a direct transfer.  

Repeating this yearly process over an extended period 
results in a general sensitivity to energy requirements 
vs. trip duration. The lowest energy opportunities 
(~77-82 km2/s2) take on the order of 2-4 years for 
outbound transit, but are very sparse. More launch 
opportunities exist if planning on up to 90 km2/s2. 
 
Also, energy requirements begin to become 
unreasonable at or below 1.5 year outbound transit  

Transfer to Jupiter can be 
reduced from 2.75-3 years to ~2 

years at a performance cost 



Affordability Impacts 
§  Recent assessment shows benefit of launch vehicle cost leverage 

•  Assessment shows using SLS rather than Atlas V can save up to $400M 
§  Recent assessment shows benefit of trip time reduction 

•  Standard approach is a 6 year VEEGA trajectory on Atlas V w/ 2.5 year tour 
•  Assessment shows up to $300M cost reduction by reducing outbound trajectory 

to ~3 years with a 1.5 year Jupiter tour 
•  New assessment shows ability to reduce the outbound trajectory to ~2 years 
•  Radiation mitigation strategy savings on the order of $300M as well 

§  Unprecedented mass delivery to 80km2/s2: 
•  Simplified spacecraft design choice quantification  

•  Eliminate some unique subsystem development by choosing heavier and/or heritage 
subsystems and/or components 

•  Streamlined development cycle using add’l margin (DDT&E compress) 
•  Non-mass driven design can lead to a cost & schedule driven DDT&E cycle 

•  Multiple mission capability per launch vehicle 
•  Quick assessment shows 5t JEO mission can be multiplied by at least 3 (w/ margin) 
•  Spirit and Opportunity analog (yet on the same launch vehicle) 

18 

Total Mission Savings up to ~$1B plus savings realized from spacecraft simplification  



General Study Observations 

19 

 
§  #1: Using SLS in an integrated fashion with a single, existing in-

space stage delivers more performance to beyond LEO targets 
than most options assessed (variable SLS dropoff-orbit scenario) 

§  #2: All Evolved Vehicle concepts studied deliver comparable 
performance to most beyond-LEO targets 

 
§  #3: A heavy-lift vehicle can have a net positive cost impact on a 

particular beyond-LEO mission design based on trip duration 
reduction and subsystem design choices  

 


