research

Mantle melting as a function of water content beneath back-arc basins

Abstract

Subduction zone magmas are characterized by high concentrations of H_(2)O, presumably derived from the subducted plate and ultimately responsible for melting at this tectonic setting. Previous studies of the role of water during mantle melting beneath back-arc basins found positive correlations between the H_(2)O concentration of the mantle (H_(2)O_o ) and the extent of melting (F), in contrast to the negative correlations observed at mid-ocean ridges. Here we examine data compiled from six back-arc basins and three mid-ocean ridge regions. We use TiO_2 as a proxy for F, then use F to calculate H_(2)O_o from measured H_(2)O concentrations of submarine basalts. Back-arc basins record up to 0.5 wt % H_(2)O or more in their mantle sources and define positive, approximately linear correlations between H_(2)O_o and F that vary regionally in slope and intercept. Ridge-like mantle potential temperatures at back-arc basins, constrained from Na-Fe systematics (1350°–1500°C), correlate with variations in axial depth and wet melt productivity (∼30–80% F/wt % H_(2)O_o ). Water concentrations in back-arc mantle sources increase toward the trench, and back-arc spreading segments with the highest mean H_(2)O_o are at anomalously shallow water depths, consistent with increases in crustal thickness and total melt production resulting from high H_(2)O. These results contrast with those from ridges, which record low H_(2)O_o (<0.05 wt %) and broadly negative correlations between H_(2)O_o and F that result from purely passive melting and efficient melt focusing, where water and melt distribution are governed by the solid flow field. Back-arc basin spreading combines ridge-like adiabatic melting with nonadiabatic mantle melting paths that may be independent of the solid flow field and derive from the H_(2)O supply from the subducting plate. These factors combine significant quantitative and qualitative differences in the integrated influence of water on melting phenomena in back-arc basin and mid-ocean ridge settings

    Similar works