13 research outputs found

    Pro-regenerative Dialogue Between Macrophages and Mesenchymal Stem/Stromal Cells in Osteoarthritis

    Get PDF
    International audienceOsteoarthritis (OA), the most common degenerative and inflammatory joint disorder, is multifaceted. Indeed, OA characteristics include cartilage degradation, osteophytes formation, subchondral bone changes, and synovium inflammation. The difficulty in discovering new efficient treatments for OA patients up to now comes from the adoption of monotherapy approaches targeting either joint tissue repair/catabolism or inflammation to address the diverse components of OA. When satisfactory, these approaches only provide short-term beneficial effects, since they only result in the repair and not the full structural and functional reconstitution of the damaged tissues. In the present review, we will briefly discuss the current therapeutic approaches used to repair the damaged OA cartilage. We will highlight the results obtained with cell-based products in clinical trials and demonstrate how the current strategies result in articular cartilage repair showing restricted early-stage clinical improvements. In order to identify novel therapeutic targets and provide to OA patients long-term clinical benefits, herein, we will review the basis of the regenerative process. We will focus on macrophages and their ambivalent roles in OA development and tissue regeneration, and review the therapeutic strategies to target the macrophage response and favor regeneration in OA

    Propuesta de procedimientos estratégicos para potenciar la expresión oral en el aula

    No full text
    Tesis (Psicopedagogo, Licenciado en Educación)Este trabajo está circunscrito en una investigación mayor realizada por docentes de nuestra universidad, que considera tres áreas: lectura, escritura y expresión oral, con el fin de proponer estrategias que puedan ser aplicadas en el aula. Nuestra labor específica es investigar las estrategias que utilizan los expertos vinculados al ámbito de la comunicación oral (periodistas, locutores, profesores, políticos, etc.) para luego adaptarlas, proponerlas y aplicarlas mediante el profesor de aula. Esta investigación surge de nuestra experiencia como estudiantes, al darnos cuenta que existe una carencia en los establecimientos educacionales, donde la principal preocupación está centrada en las áreas de lectura, comprensión y escritura, dejando de lado la expresión oral. Creemos que debiera considerarse por ser ésta el pilar fundamental para adquirir otros aprendizajes; por lo tanto, nuestra labor apunta a proponer actividades estratégicas que potencien la expresión oral en el aula. Desde nuestra perspectiva psicopedagógica, cabe señalar que el formar alumnos estratégicos conlleva a un aprendizaje significativo logrando que sean más autónomos, reflexivos y constructores de su propio aprendizaje, pues al entregar las herramientas pertinentes que potencien la expresión oral, se pretende que los niños sean capaces de argumentar, expresarse oralmente de manera clara y coherente y así ampliar sus referentes mentales, lo cual es el pilar fundamental para adquirir otros aprendizajes

    IL-33 enhances retinoic acid signaling on CD4+T cells

    No full text
    Several molecules have been described as CD4+ T cells differentiation modulators and among them retinoic acid (RA) and more recently, IL-33, have been studied. Due to the similarities in T helper cell skewing properties between RA and IL-33, we asked whether IL-33 intersects, directly or indirectly, the RA signaling pathway. Total CD4+ T cells from DR5-luciferase mice were activated in the presence of RA with or without IL-33, and RA signaling was visualized using ex vivo imaging. Our results demonstrate that IL-33 itself is able to trigger RA signaling on CD4+ T cells, which is highly increased when IL-33 is added in conjunction with RA. This study presents IL-33 as a potential player that may synergize with RA in controlling T cell differentiation, and suggests that IL-33 may be an attractive target in controlling T cell differentiation in vivo.FONDECYT 11121309 PMI UAN130

    Macrophages skew towards M1 profile through reduced CD163 expression in symptomatic apical periodontitis

    No full text
    Objectives To explore the macrophage profiles in symptomatic and asymptomatic forms of AP through phenotypic and functional analyses. Material and methods Cross-sectional study. Apical tissue/lesion samples were collected from patients with clinical diagnosis of AAP (n = 51) or SAP (n = 45) and healthy periodontal ligament (HPL) from healthy patients as controls (n = 14), all with indication of tooth extraction. Samples were digested, cells were stained for CD14, M1 (CD64, CD80), and M2 (CD163, CD206) phenotypic surface markers and analyzed by flow cytometry. Functional cytokine profiles L-6, IL-12, TNF-alpha, IL-23 (M1), IL-10, and TGF-beta (M2) were determined by qPCR. Results Higher macrophage M1/M2 ratio (CD64(+)CD80(+)/CD163(+)CD206(+)) along with lower CD163 mean fluorescence intensity (MFI) were found in SAP compared to AAP and controls (p < 0.05). IL-6, IL-12, TNF-alpha, IL-23 (M1), and IL-10 mRNA (M2) were upregulated, whereas TGF-beta mRNA (M2) was downregulated in apical lesions compared to controls. Specifically, IL-6 and IL-23 (M1) were upregulated in SAP compared with AAP and controls (p < 0.05). The data were analyzed with Kruskal-Wallis test. Conclusions Macrophages exhibited a polarization switch towards M1 in AL. SAP exhibited a reduced M2 differentiation profile based on a reduction of CD163 expression levels in SAP over AAP. Specifically, IL-6 and IL-23 were augmented SAP over AAP, suggesting a role in the severity of apical lesions.Chilean Government CONICYT 2117164

    Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells

    No full text
    International audienceMesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity

    Alarmin’ immunologists: IL-33 as a putative target for modulating T cell-dependent responses

    No full text
    IL-33 is a known member of the IL-1 cytokine superfamily classically named “atypical” due to its diverse functions. The receptor for this cytokine is the ST2 chain (or IL-1RL1), part of the IL-1R family, and the accessory chain IL-1R. ST2 can be found as both soluble and membrane-bound forms, property that explains, at least in part, its wide range of functions. IL-33 has increasingly gained our attention as a potential target to modulate immune responses. At the beginning, it was known as one of the participants during the development of allergic states and other Th2-mediated responses and it is now accepted that IL-33 contributes to Th1-driven pathologies as demonstrated in animal models of experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis, and trinitrobenzene sulfonic acid-induced experimental colitis, among others. Interestingly, current data are placing IL-33 as a novel regulator of immune tolerance by affecting regulatory T cells (Tregs); although the mechanism is not fully understood, it seems that dendritic cells and myeloid suppressor-derived cells may be cooperating in the generation and/or establishment of IL-33-mediated tolerance. Here, we review the most updated literature on IL-33, its role on T cell biology, and its impact in immune tolerance

    O-polysaccharide plays a major role on the virulence and immunostimulatory potential of aggregatibacter actinomycetemcomitans during periodontal infection

    No full text
    Aggregatibacter actinomycetemcomitans is a Gram-negative oral bacterium with high immunostimulatory and pathogenic potential involved in the onset and progression of periodontitis, a chronic disease characterized by aberrant immune responses followed by tooth-supporting bone resorption, which eventually leads to tooth loss. While several studies have provided evidence related to the virulence factors of A. actinomycetemcomitans involved in the host cell death and immune evasion, such as its most studied primate-specific virulence factor, leukotoxin, the role of specific lipopolysaccharide (LPS) domains remain poorly understood. Here, we analyzed the role of the immunodominant domain of the LPS of A. actinomycetemcomitans termed O-polysaccharide (O-PS), which differentiates the distinct bacterial serotypes based on its antigenicity. To determine the role of the O-PS in the immunogenicity and virulence of A. actinomycetemcomitans during periodontitis, we analyzed the in vivo and in vitro effect of an O-PS-defective transposon mutant serotype b strain, characterized by the deletion of the rmlC gene encoding the alpha-L-rhamnose sugar biosynthetic enzyme. Induction of experimental periodontitis using the O-PS-defective rmlC mutant strain resulted in lower tooth-supporting bone resorption, infiltration of Th1, Th17, and Th22 lymphocytes, and expression of Ahr, Il1b, Il17, Il23, Tlr4, and RANKL (Tnfsf11) in the periodontal lesions as compared with the wild-type A. actinomycetemcomitans strain. In addition, the O-PS-defective rmlC mutant strain led to impaired activation of antigen-presenting cells, with less expression of the co-stimulatory molecules CD40 and CD80 in B lymphocytes and dendritic cells, and downregulated expression of Tnfa and Il1b in splenocytes. In conclusion, these data demonstrate that the O-PS from the serotype b of A. actinomycetemcomitans plays a key role in the capacity of the bacterium to prime oral innate and adaptive immune responses, by triggering the Th1 and Th17-driven tooth-supporting bone resorption during periodontitis.Chilean Governmental, Agencia Nacional de Investigacion y Desarrollo (ANID) FONDECYT 1181780 ANID CONICYT 2117029

    PLOD2, a key factor for MRL MSC metabolism and chondroprotective properties

    No full text
    International audienceAbstract Background Initially discovered for its ability to regenerate ear holes, the Murphy Roth Large (MRL) mouse has been the subject of multiple research studies aimed at evaluating its ability to regenerate other body tissues and at deciphering the mechanisms underlying it. These enhanced abilities to regenerate, retained during adulthood, protect the MRL mouse from degenerative diseases such as osteoarthritis (OA). Here, we hypothesized that mesenchymal stromal/stem cells (MSC) derived from the regenerative MRL mouse could be involved in their regenerative potential through the release of pro-regenerative mediators. Method To address this hypothesis, we compared the secretome of MRL and BL6 MSC and identified several candidate molecules expressed at significantly higher levels by MRL MSC than by BL6 MSC. We selected one candidate, Plod2 , and performed functional in vitro assays to evaluate its role on MRL MSC properties including metabolic profile, migration, and chondroprotective effects. To assess its contribution to MRL protection against OA, we used an experimental model for osteoarthritis induced by collagenase (CiOA). Results Among the candidate molecules highly expressed by MRL MSC, we focused our attention on procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2). Plod2 silencing induced a decrease in the glycolytic function of MRL MSC, resulting in the alteration of their migratory and chondroprotective abilities in vitro. In vivo, we showed that Plod2 silencing in MRL MSC significantly impaired their capacity to protect mouse from developing OA. Conclusion Our results demonstrate that the chondroprotective and therapeutic properties of MRL MSC in the CiOA experimental model are in part mediated by PLOD2

    Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis

    No full text
    Aim T lymphocytes play a central role during the pathogenesis of periodontitis, and the imbalance between the pathogenic T-helper type 17 (Th17) and protective T-regulatory (Treg) lymphocytes determines the tooth-supporting alveolar bone resorption. Interleukin (IL)-35 is a novel anti-inflammatory cytokine with therapeutic properties in diseases whose pathogenesis is associated with the Th17/Treg imbalance; however, its role during periodontitis has not been established yet. This study aimed to elucidate whether IL-35 inhibits the alveolar bone resorption during periodontitis by modulating the Th17/Treg imbalance. Materials and Methods Mice with ligature-induced periodontitis were treated with locally or systemically administrated IL-35. As controls, periodontitis-affected mice without IL-35 treatment and non-ligated mice were used. Alveolar bone resorption was measured by micro-computed tomography and scanning electron microscopy. The Th17/Treg pattern of the immune response was analysed by qPCR, ELISA, and flow cytometry. Results IL-35 inhibited alveolar bone resorption in periodontitis mice. Besides, IL-35 induced less detection of Th17 lymphocytes and production of Th17-related cytokines, together with higher detection of Treg lymphocytes and production of Treg-related cytokines in periodontitis-affected tissues. Conclusion IL-35 is beneficial in the regulation of periodontitis; particularly, IL-35 inhibited alveolar bone resorption and this inhibition was closely associated with modulation of the periodontal Th17/Treg imbalance.FONDECYT grant from the Chilean Governmental, Agencia Nacional de Investigacion y Desarrollo (ANID): 1181780 Graduate School of the Faculty of Dentistry, Universidad de Chil
    corecore